Analysis of Maximum Likelihood classification technique on Landsat 5 TM satellite data of tropical land covers

The aim of this paper is to carry out analysis of Maximum Likelihood (ML) on Landsat 5 TM (Thematic Mapper) satellite data of tropical land covers. ML is a supervised classification method which is based on the Bayes theorem. It makes use of a discriminant function to assign pixel to the class with...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE International Conference on Control System, Computing and Engineering pp. 280 - 285
Main Authors Ahmad, Asmala, Quegan, Shaun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2012
Subjects
Online AccessGet full text
ISBN9781467331425
1467331422
DOI10.1109/ICCSCE.2012.6487156

Cover

Abstract The aim of this paper is to carry out analysis of Maximum Likelihood (ML) on Landsat 5 TM (Thematic Mapper) satellite data of tropical land covers. ML is a supervised classification method which is based on the Bayes theorem. It makes use of a discriminant function to assign pixel to the class with the highest likelihood. Class mean vector and covariance matrix are the key inputs to the function and can be estimated from the training pixels of a particular class. In this study, we used ML to classify a diverse tropical land covers recorded from Landsat 5 TM satellite. The classification is carefully examined using visual analysis, classification accuracy, band correlation and decision boundary. The results show that the separation between mean of the classes in the decision space is to be the main factor that leads to the high classification accuracy of ML.
AbstractList The aim of this paper is to carry out analysis of Maximum Likelihood (ML) on Landsat 5 TM (Thematic Mapper) satellite data of tropical land covers. ML is a supervised classification method which is based on the Bayes theorem. It makes use of a discriminant function to assign pixel to the class with the highest likelihood. Class mean vector and covariance matrix are the key inputs to the function and can be estimated from the training pixels of a particular class. In this study, we used ML to classify a diverse tropical land covers recorded from Landsat 5 TM satellite. The classification is carefully examined using visual analysis, classification accuracy, band correlation and decision boundary. The results show that the separation between mean of the classes in the decision space is to be the main factor that leads to the high classification accuracy of ML.
Author Ahmad, Asmala
Quegan, Shaun
Author_xml – sequence: 1
  givenname: Asmala
  surname: Ahmad
  fullname: Ahmad, Asmala
  organization: Faculty of Information and Communication Technology Universiti Teknikal Malaysia Melaka (UTeM) Melaka, Malaysia
– sequence: 2
  givenname: Shaun
  surname: Quegan
  fullname: Quegan, Shaun
  organization: School of Mathematics and Statistics University of Sheffield Sheffield, United Kingdom
BookMark eNo1UM1OAjEYrFETBXkCLn0BsD-7bfdINigkSzyIZ9Jtvw3V0uK2GHl714inmUlmJpkZoZsQAyA0pWROKake13X9Wi_njFA2F4WStBRXaEQLITmnBS2u0aSS6l-z8g5NUnonhAxpoUh5j8IiaH9OLuHY4Y3-dofTATfuA7zbx2ix8Tol1zmjs4sBZzD74D5PgAfR6GCTzrjE2w0eCHjvMmCrs_5ty308DjmP_eDDJn5Bnx7Qbad9gskFx-jtabmtV7Pm5XldL5qZo7LMs1ZxSZQQlimlqBS0BSNbwzUBXrWtrIjthk0UKs2sUsaUwzrDpLUVIQVjfIymf70OAHbH3h10f95dLuI_mGlc1Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSCE.2012.6487156
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISBN 1467331414
1467331430
9781467331432
9781467331418
EndPage 285
ExternalDocumentID 6487156
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-b8370866d28881761bec7bc3a0e39bb790df6731e9a2d88cc5142c27dd9004223
IEDL.DBID RIE
ISBN 9781467331425
1467331422
IngestDate Wed Sep 03 07:08:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b8370866d28881761bec7bc3a0e39bb790df6731e9a2d88cc5142c27dd9004223
PageCount 6
ParticipantIDs ieee_primary_6487156
PublicationCentury 2000
PublicationDate 2012-Nov.
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-Nov.
PublicationDecade 2010
PublicationTitle 2012 IEEE International Conference on Control System, Computing and Engineering
PublicationTitleAbbrev ICCSCE
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106805
Score 1.567479
Snippet The aim of this paper is to carry out analysis of Maximum Likelihood (ML) on Landsat 5 TM (Thematic Mapper) satellite data of tropical land covers. ML is a...
SourceID ieee
SourceType Publisher
StartPage 280
SubjectTerms Accuracy
Bayesian
Classification
Forestry
Land surface
Landsat
Maximum Likelihood
Oils
Remote sensing
Satellites
Sea measurements
Training
Vectors
Title Analysis of Maximum Likelihood classification technique on Landsat 5 TM satellite data of tropical land covers
URI https://ieeexplore.ieee.org/document/6487156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB7UQ-mpDy19s4cem5iseZ6DYosphSp4k-wjEKxRbAKlv74zSVRaeuhtdw_LMjsw3-x-8w3AgyOdBHGxNHxLJoajwtAQ2qMP1zRNSdEuSOlHN37xxjPnee7OW_C4r4XRWlfkM23SsPrLV2tZ0lNZ30N0jflGG9roZnWt1uE9xaYuEm5Vu-VRI0KH852kUzN3G9Uh2wr7T1H0Fg2J2sXNZtsf_VWq8DI6gXh3sJpVsjTLQpjy65dm439Pfgq9QyEfe92HqDNo6fwcjqgdJ_V460K-0yRh65TFyWe2Kldski31e0Zyx0wStiYyUXV_bC_4ynAyoSLhpGAum8YMB6TsWWhGlFPardiuN-QAjKiTTBJT9KMHs9FwGo2NpgODkSGsKAxB0jiB5ymOibLtezbeuC_kILH0IBTCDy2VonFtHSZcBYGUCL-45L5SYSUuNriATr7O9SUwYSkMjIIHiAgRogWIO7krE8zPHF_Z2rmCLpltsalFNhaNxa7_Xr6BY7q6uijwFjrFttR3iA4KcV-5xTduFbU4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qBfXkoxXf7sGjSZNtnufQ0mpSBFvorWQfgaBNSk1A_PXOJGmL4sHb7h6WZXZhvtn55htCHixhxYCLheYaItYs6fsaVw4mXJMkQUU7L8GMbjRxRjPraW7PW-RxWwujlKrIZ0rHYZXLl7ko8aus5wC6hnhjj-yD37fsulpr96NiYh8Ju6recrAVocXYRtSpmduN7pBp-L1xELwGAyR3Mb3Z-EeHlcrBDI9JtDlazSt508uC6-Lrl2rjf89-Qrq7Uj76snVSp6SlsjNygA05sctbh2QbVRKaJzSKP9NluaRh-qbeUxQ8pgLRNdKJqhukW8lXCpMQy4Tjgtp0GlEYoLZnoSiSTnG3Yp2v8AlQJE9SgVzRjy6ZDQfTYKQ1PRi0FIBFoXEUx_EcRzIIlU3XMeHOXS76saH6Pueub8gEjGsqP2bS84QAAMYEc6X0K3mx_jlpZ3mmLgjlhgTXyJkHmBBAmgfIk9kihgjNcqWprEvSQbMtVrXMxqKx2NXfy_fkcDSNwkU4njxfkyO8xrpE8Ia0i3WpbgErFPyueiLfHjm4hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Conference+on+Control+System%2C+Computing+and+Engineering&rft.atitle=Analysis+of+Maximum+Likelihood+classification+technique+on+Landsat+5+TM+satellite+data+of+tropical+land+covers&rft.au=Ahmad%2C+Asmala&rft.au=Quegan%2C+Shaun&rft.date=2012-11-01&rft.pub=IEEE&rft.isbn=9781467331425&rft.spage=280&rft.epage=285&rft_id=info:doi/10.1109%2FICCSCE.2012.6487156&rft.externalDocID=6487156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/sc.gif&client=summon&freeimage=true