Analysis of Maximum Likelihood classification technique on Landsat 5 TM satellite data of tropical land covers
The aim of this paper is to carry out analysis of Maximum Likelihood (ML) on Landsat 5 TM (Thematic Mapper) satellite data of tropical land covers. ML is a supervised classification method which is based on the Bayes theorem. It makes use of a discriminant function to assign pixel to the class with...
Saved in:
Published in | 2012 IEEE International Conference on Control System, Computing and Engineering pp. 280 - 285 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 9781467331425 1467331422 |
DOI | 10.1109/ICCSCE.2012.6487156 |
Cover
Abstract | The aim of this paper is to carry out analysis of Maximum Likelihood (ML) on Landsat 5 TM (Thematic Mapper) satellite data of tropical land covers. ML is a supervised classification method which is based on the Bayes theorem. It makes use of a discriminant function to assign pixel to the class with the highest likelihood. Class mean vector and covariance matrix are the key inputs to the function and can be estimated from the training pixels of a particular class. In this study, we used ML to classify a diverse tropical land covers recorded from Landsat 5 TM satellite. The classification is carefully examined using visual analysis, classification accuracy, band correlation and decision boundary. The results show that the separation between mean of the classes in the decision space is to be the main factor that leads to the high classification accuracy of ML. |
---|---|
AbstractList | The aim of this paper is to carry out analysis of Maximum Likelihood (ML) on Landsat 5 TM (Thematic Mapper) satellite data of tropical land covers. ML is a supervised classification method which is based on the Bayes theorem. It makes use of a discriminant function to assign pixel to the class with the highest likelihood. Class mean vector and covariance matrix are the key inputs to the function and can be estimated from the training pixels of a particular class. In this study, we used ML to classify a diverse tropical land covers recorded from Landsat 5 TM satellite. The classification is carefully examined using visual analysis, classification accuracy, band correlation and decision boundary. The results show that the separation between mean of the classes in the decision space is to be the main factor that leads to the high classification accuracy of ML. |
Author | Ahmad, Asmala Quegan, Shaun |
Author_xml | – sequence: 1 givenname: Asmala surname: Ahmad fullname: Ahmad, Asmala organization: Faculty of Information and Communication Technology Universiti Teknikal Malaysia Melaka (UTeM) Melaka, Malaysia – sequence: 2 givenname: Shaun surname: Quegan fullname: Quegan, Shaun organization: School of Mathematics and Statistics University of Sheffield Sheffield, United Kingdom |
BookMark | eNo1UM1OAjEYrFETBXkCLn0BsD-7bfdINigkSzyIZ9Jtvw3V0uK2GHl714inmUlmJpkZoZsQAyA0pWROKake13X9Wi_njFA2F4WStBRXaEQLITmnBS2u0aSS6l-z8g5NUnonhAxpoUh5j8IiaH9OLuHY4Y3-dofTATfuA7zbx2ix8Tol1zmjs4sBZzD74D5PgAfR6GCTzrjE2w0eCHjvMmCrs_5ty308DjmP_eDDJn5Bnx7Qbad9gskFx-jtabmtV7Pm5XldL5qZo7LMs1ZxSZQQlimlqBS0BSNbwzUBXrWtrIjthk0UKs2sUsaUwzrDpLUVIQVjfIymf70OAHbH3h10f95dLuI_mGlc1Q |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCSCE.2012.6487156 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISBN | 1467331414 1467331430 9781467331432 9781467331418 |
EndPage | 285 |
ExternalDocumentID | 6487156 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-b8370866d28881761bec7bc3a0e39bb790df6731e9a2d88cc5142c27dd9004223 |
IEDL.DBID | RIE |
ISBN | 9781467331425 1467331422 |
IngestDate | Wed Sep 03 07:08:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-b8370866d28881761bec7bc3a0e39bb790df6731e9a2d88cc5142c27dd9004223 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6487156 |
PublicationCentury | 2000 |
PublicationDate | 2012-Nov. |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2012 IEEE International Conference on Control System, Computing and Engineering |
PublicationTitleAbbrev | ICCSCE |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001106805 |
Score | 1.567479 |
Snippet | The aim of this paper is to carry out analysis of Maximum Likelihood (ML) on Landsat 5 TM (Thematic Mapper) satellite data of tropical land covers. ML is a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 280 |
SubjectTerms | Accuracy Bayesian Classification Forestry Land surface Landsat Maximum Likelihood Oils Remote sensing Satellites Sea measurements Training Vectors |
Title | Analysis of Maximum Likelihood classification technique on Landsat 5 TM satellite data of tropical land covers |
URI | https://ieeexplore.ieee.org/document/6487156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB7UQ-mpDy19s4cem5iseZ6DYosphSp4k-wjEKxRbAKlv74zSVRaeuhtdw_LMjsw3-x-8w3AgyOdBHGxNHxLJoajwtAQ2qMP1zRNSdEuSOlHN37xxjPnee7OW_C4r4XRWlfkM23SsPrLV2tZ0lNZ30N0jflGG9roZnWt1uE9xaYuEm5Vu-VRI0KH852kUzN3G9Uh2wr7T1H0Fg2J2sXNZtsf_VWq8DI6gXh3sJpVsjTLQpjy65dm439Pfgq9QyEfe92HqDNo6fwcjqgdJ_V460K-0yRh65TFyWe2Kldski31e0Zyx0wStiYyUXV_bC_4ynAyoSLhpGAum8YMB6TsWWhGlFPardiuN-QAjKiTTBJT9KMHs9FwGo2NpgODkSGsKAxB0jiB5ymOibLtezbeuC_kILH0IBTCDy2VonFtHSZcBYGUCL-45L5SYSUuNriATr7O9SUwYSkMjIIHiAgRogWIO7krE8zPHF_Z2rmCLpltsalFNhaNxa7_Xr6BY7q6uijwFjrFttR3iA4KcV-5xTduFbU4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qBfXkoxXf7sGjSZNtnufQ0mpSBFvorWQfgaBNSk1A_PXOJGmL4sHb7h6WZXZhvtn55htCHixhxYCLheYaItYs6fsaVw4mXJMkQUU7L8GMbjRxRjPraW7PW-RxWwujlKrIZ0rHYZXLl7ko8aus5wC6hnhjj-yD37fsulpr96NiYh8Ju6recrAVocXYRtSpmduN7pBp-L1xELwGAyR3Mb3Z-EeHlcrBDI9JtDlazSt508uC6-Lrl2rjf89-Qrq7Uj76snVSp6SlsjNygA05sctbh2QbVRKaJzSKP9NluaRh-qbeUxQ8pgLRNdKJqhukW8lXCpMQy4Tjgtp0GlEYoLZnoSiSTnG3Yp2v8AlQJE9SgVzRjy6ZDQfTYKQ1PRi0FIBFoXEUx_EcRzIIlU3XMeHOXS76saH6Pueub8gEjGsqP2bS84QAAMYEc6X0K3mx_jlpZ3mmLgjlhgTXyJkHmBBAmgfIk9kihgjNcqWprEvSQbMtVrXMxqKx2NXfy_fkcDSNwkU4njxfkyO8xrpE8Ia0i3WpbgErFPyueiLfHjm4hQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Conference+on+Control+System%2C+Computing+and+Engineering&rft.atitle=Analysis+of+Maximum+Likelihood+classification+technique+on+Landsat+5+TM+satellite+data+of+tropical+land+covers&rft.au=Ahmad%2C+Asmala&rft.au=Quegan%2C+Shaun&rft.date=2012-11-01&rft.pub=IEEE&rft.isbn=9781467331425&rft.spage=280&rft.epage=285&rft_id=info:doi/10.1109%2FICCSCE.2012.6487156&rft.externalDocID=6487156 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/sc.gif&client=summon&freeimage=true |