Context Encoders: Feature Learning by Inpainting
We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders - a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order t...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2536 - 2544 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders - a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order to succeed at this task, context encoders need to both understand the content of the entire image, as well as produce a plausible hypothesis for the missing part(s). When training context encoders, we have experimented with both a standard pixel-wise reconstruction loss, as well as a reconstruction plus an adversarial loss. The latter produces much sharper results because it can better handle multiple modes in the output. We found that a context encoder learns a representation that captures not just appearance but also the semantics of visual structures. We quantitatively demonstrate the effectiveness of our learned features for CNN pre-training on classification, detection, and segmentation tasks. Furthermore, context encoders can be used for semantic inpainting tasks, either stand-alone or as initialization for non-parametric methods. |
---|---|
AbstractList | We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders - a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order to succeed at this task, context encoders need to both understand the content of the entire image, as well as produce a plausible hypothesis for the missing part(s). When training context encoders, we have experimented with both a standard pixel-wise reconstruction loss, as well as a reconstruction plus an adversarial loss. The latter produces much sharper results because it can better handle multiple modes in the output. We found that a context encoder learns a representation that captures not just appearance but also the semantics of visual structures. We quantitatively demonstrate the effectiveness of our learned features for CNN pre-training on classification, detection, and segmentation tasks. Furthermore, context encoders can be used for semantic inpainting tasks, either stand-alone or as initialization for non-parametric methods. |
Author | Pathak, Deepak Krahenbuhl, Philipp Donahue, Jeff Darrell, Trevor Efros, Alexei A. |
Author_xml | – sequence: 1 givenname: Deepak surname: Pathak fullname: Pathak, Deepak email: pathak@cs.berkeley.edu organization: Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 2 givenname: Philipp surname: Krahenbuhl fullname: Krahenbuhl, Philipp email: philkr@cs.berkeley.edu organization: Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 3 givenname: Jeff surname: Donahue fullname: Donahue, Jeff email: jdonahue@cs.berkeley.edu organization: Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 4 givenname: Trevor surname: Darrell fullname: Darrell, Trevor email: trevor@cs.berkeley.edu organization: Univ. of California, Berkeley, Berkeley, CA, USA – sequence: 5 givenname: Alexei A. surname: Efros fullname: Efros, Alexei A. email: efros@cs.berkeley.edu organization: Univ. of California, Berkeley, Berkeley, CA, USA |
BookMark | eNotjMFKw0AQQFdRsNYcPXnZH0icyWZ3drxJaLUQUES9lk0ykYhuShLB_n0LenmPd3mX6iwOUZS6RsgQgW_L9-eXLAd0WU7-RCVMHgtHxnuLeKoWCM6kjpEvVDJNnwCA7Dx6XigohzjL76xXsRlaGac7vZYw_4yiKwlj7OOHrvd6E3ehj_OxrtR5F74mSf69VG_r1Wv5mFZPD5vyvkp7JDuntZOcamtcZziXorbE3nF3pDXQGgqWyDVcCIrDru2CAdOw1NTahqEFs1Q3f99eRLa7sf8O435L5MEVZA753kS7 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.278 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 2544 |
ExternalDocumentID | 7780647 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-b6e27b536f392e4b579869f798530d37a5776c94e1e61fdfa303c9eb7d5c90d03 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:54:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-b6e27b536f392e4b579869f798530d37a5776c94e1e61fdfa303c9eb7d5c90d03 |
PageCount | 9 |
ParticipantIDs | ieee_primary_7780647 |
PublicationCentury | 2000 |
PublicationDate | 2016-June |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.6026924 |
Snippet | We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2536 |
SubjectTerms | Computer architecture Context Convolutional codes Decoding Image reconstruction Semantics Visualization |
Title | Context Encoders: Feature Learning by Inpainting |
URI | https://ieeexplore.ieee.org/document/7780647 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BS8MwFH5sO3mauok6lRw82q5Nm2TxOjamMBniZLeRtK8yhG5sLai_3qTtOhEPXkr7IDQkJN97yfveB3BrgwikPHGoMltgKGLlaEUTRwmDfdTnkieW7zx94pN5-Lhgiwbc1VwYRCySz9C1r8VdfryOcntU1hdiYLmRTWiawK3kah3OUyQ32CPr78BENlzWNwrUqrEcamz2h6-zZ5vYxV1qFdZ-KKsUwDJuw3TfpTKf5N3NM-1GX7-qNf63z8fQPVD4yKwGpxNoYHoK7crnJNWK3hnTXtZhb-uAV1Ss-sjIKLWE9-3unlhHMd8iqaqxvhH9SR7SjVoVOhNdmI9HL8OJUwkrOCvjLWSO5kiFZgFPjHeEoWZCDrhMzJMFXhwIxYTgkQzRR-4ncaIMzkUStYhZJL3YC86gla5TPAeiA9PaeI06lCawElwNNHqMUR745icML6Bjx2S5KWtnLKvhuPzb3IMjOydlKtYVtLJtjtcG9DN9U8z2NxoWp44 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjG6PbWuqVQFCBEAOGG2m3N0NMBoEtUf96220MYzx4WbaXLGv60r3vte97H8CdSSKQssiiUv8CPR5KS0kaWZLr2EdbTLDI8J2HI9afek8zf1aB-5ILg4hZ8Rna5jY7yw-XQWq2ypqctw03cg_2ddz3ac7W2u2oCKajjyifXZ3bMFGeKVCjx7LrstnsvI5fTGkXs6nRWPuhrZKFll4NhttB5RUl73aaKDv4-tWv8b-jPoLGjsRHxmV4OoYKxidQK1AnKdb0Rpu2wg5bWx2crGfVR0K6saG8rzcPxEDFdI2k6Mf6RtQneYxXcpEpTTRg2utOOn2rkFawFhovJJZiSLnyXRZpfISe8rloMxHpq-86oculzzkLhIctZK0ojKSOdIFAxUM_EE7ouKdQjZcxngFRrn5b40blCZ1acSbbCh3tHea29Ed8PIe6mZP5Ku-eMS-m4-Jv8y0c9CfDwXzwOHq-hEPjn7ww6wqqyTrFaw0BEnWTef4bD4Kq2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Context+Encoders%3A+Feature+Learning+by+Inpainting&rft.au=Pathak%2C+Deepak&rft.au=Krahenbuhl%2C+Philipp&rft.au=Donahue%2C+Jeff&rft.au=Darrell%2C+Trevor&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2536&rft.epage=2544&rft_id=info:doi/10.1109%2FCVPR.2016.278&rft.externalDocID=7780647 |