Uncertainty propagation from atmospheric parameters to sparse hyperspectral unmixing

Sparse hyperspectral unmixing is a widely used technique in remote sensing data characterization. It aims at inferring, from a large spectral library, the pure spectral signatures (endmembers) present in each pixel of a hyperspectral image, jointly with their corresponding abundances. The input to s...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Geoscience and Remote Sensing Symposium proceedings pp. 6133 - 6136
Main Authors Iordache, Marian-Daniel, Bhatia, Nitin, Bioucas-Dias, Jose M., Plaza, Antonio
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sparse hyperspectral unmixing is a widely used technique in remote sensing data characterization. It aims at inferring, from a large spectral library, the pure spectral signatures (endmembers) present in each pixel of a hyperspectral image, jointly with their corresponding abundances. The input to sparse unmixing is represented, thus, by a hyperspectral image acquired from a platform flying at high altitude and a spectral library compiled using laboratory measurements. The reflectance datacube results from a complex ensemble of algorithms which translate the digital numbers stored by the sensor to meaningful ground reflectance, including the removal of atmospheric influence. A recurrent question in the research community does not have an answer yet: how does the atmospheric composition at the time of the flight influence the fractional abundances retrieved via sparse unmixing? This is a fundamental question, as the atmospheric parameters are subject to uncertainties, being very difficult to know them in all pixels. In this paper, we investigate how the uncertainty in two atmospheric parameters: water vapor content and visibility range, propagates to the final abundance maps via atmospheric correction of the sensed image. Our experiments reveal that sparse unmixing is more robust to uncertainty in those parameters and performs better in terms of accuracy than unmixing with image-based endmembers.
AbstractList Sparse hyperspectral unmixing is a widely used technique in remote sensing data characterization. It aims at inferring, from a large spectral library, the pure spectral signatures (endmembers) present in each pixel of a hyperspectral image, jointly with their corresponding abundances. The input to sparse unmixing is represented, thus, by a hyperspectral image acquired from a platform flying at high altitude and a spectral library compiled using laboratory measurements. The reflectance datacube results from a complex ensemble of algorithms which translate the digital numbers stored by the sensor to meaningful ground reflectance, including the removal of atmospheric influence. A recurrent question in the research community does not have an answer yet: how does the atmospheric composition at the time of the flight influence the fractional abundances retrieved via sparse unmixing? This is a fundamental question, as the atmospheric parameters are subject to uncertainties, being very difficult to know them in all pixels. In this paper, we investigate how the uncertainty in two atmospheric parameters: water vapor content and visibility range, propagates to the final abundance maps via atmospheric correction of the sensed image. Our experiments reveal that sparse unmixing is more robust to uncertainty in those parameters and performs better in terms of accuracy than unmixing with image-based endmembers.
Author Bioucas-Dias, Jose M.
Iordache, Marian-Daniel
Plaza, Antonio
Bhatia, Nitin
Author_xml – sequence: 1
  givenname: Marian-Daniel
  surname: Iordache
  fullname: Iordache, Marian-Daniel
  organization: Flemish Inst. for Technol. Res., Mol, Belgium
– sequence: 2
  givenname: Nitin
  surname: Bhatia
  fullname: Bhatia, Nitin
  organization: Flemish Inst. for Technol. Res., Mol, Belgium
– sequence: 3
  givenname: Jose M.
  surname: Bioucas-Dias
  fullname: Bioucas-Dias, Jose M.
  organization: Inst. de Telecomun. & Inst. Super. Tecnico, Univ. de Lisboa, Lisbon, Portugal
– sequence: 4
  givenname: Antonio
  surname: Plaza
  fullname: Plaza, Antonio
  organization: Dept. of Technol. of Comput. & Commun., Univ. of Extremadura, Caceres, Spain
BookMark eNotkMFuwjAQRN2qlUpov4CLfyB07U2c5IhQS5GQKhU4I8dZgyuSWLYrlb8vUjnNvDm8w2TsYRgHYmwmYC4ENK_r1eJru51LEGpeVQgK5B3LRAkNIKKs7tlEihLzCgCfWBbj97XUEmDCdvvBUEjaDenCfRi9PurkxoHbMPZcp36M_kTBGe510D0lCpGnkccrRuKni78OnkwK-sx_ht79uuH4zB6tPkd6ueWU7d_fdsuPfPO5Wi8Xm9yJqkx5q4zSWLam7BpdFkoq3UELaNu6tUZJUVvqsGk6QoDKkDVGdZ0wBdRoCyxwymb_XkdEBx9cr8PlcHsA_wBEEFUn
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS.2016.7730602
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 1509033327
9781509033324
EISSN 2153-7003
EndPage 6136
ExternalDocumentID 7730602
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-b6c6a35bc5d9a54626ad0b03fb8bfc6218fed399de3007cefcc6dd1c4083f4343
IEDL.DBID RIE
IngestDate Wed Aug 27 01:44:42 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b6c6a35bc5d9a54626ad0b03fb8bfc6218fed399de3007cefcc6dd1c4083f4343
PageCount 4
ParticipantIDs ieee_primary_7730602
PublicationCentury 2000
PublicationDate 2016-July
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-July
PublicationDecade 2010
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.6142583
Snippet Sparse hyperspectral unmixing is a widely used technique in remote sensing data characterization. It aims at inferring, from a large spectral library, the pure...
SourceID ieee
SourceType Publisher
StartPage 6133
SubjectTerms atmospheric correction
Atmospheric measurements
Atmospheric modeling
Hyperspectral imaging
Libraries
Pollution measurement
Reflectivity
Sparse unmixing
spectral libraries
Uncertainty
Title Uncertainty propagation from atmospheric parameters to sparse hyperspectral unmixing
URI https://ieeexplore.ieee.org/document/7730602
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qQfDkRyt-swePJk26ySZ7FLGtQkVsC72VZHcWizaRNgHrr3d2kyqKB28hJEyyE-bNZOe9IeSSReAnEWCRE4vICVSgHRGCdIAhFggfuowZvvPwgQ8mwf00nDbI1RcXBgBs8xm45tDu5atcluZXWSfCz5Eb5cgtLNwqrtYm6jJEMq9WFfI90bnrXz-NRqZ1i7v1bT_mp1j46O2S4cZw1TXy4pZF6sqPX5qM_32yPdL-JurRxy8I2icNyA7Idt9O6123yHiCF9gt_2JN0TQGD-sIakglNCkW-cqoCswlNQrgC9MZs6JFTjHKLFdAn7FGraiYy-SVltli_o5W2mTSux3fDJx6jIIzx9ygcFIuecLCVIZKJGGAFUyivNRjOo1TLTlivAaFeYoChgmDBC0lV8qXAWZn2hBPD0kzyzM4IlTjS6JzuyyUEMReLDAZSwRWNTrCMoqxY9IyazN7q5QyZvWynPx9-pTsGP9Uza9npFksSzhHiC_SC-vbT9ziqHg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN40NUZPPlrj2z14FApdWOBojH1o2xjbJr01sDsbGy2YFhLrr3cWaI3GgzdCIAM7ZL4Zdr5vCLlmHtihB1jk-IFnONJRRuCCMIAhFgQ2NBnTfOf-gHfGzsPEnVTIzYYLAwB58xmY-jDfy5eJyPSvsoaHnyPXypFbiPuuXbC11nGXIZZZpa6QbQWNbvv2eTjUzVvcLG_8MUElB5DWHumvTRd9I69mlkam-PylyvjfZ9sn9W-qHn3agNABqUB8SLbb-bzeVY2MxnhBvumfriiaxvCRu4JqWgkN03my1LoCM0G1Bvhc98YsaZpQjDOLJdAXrFILMuYifKNZPJ99oJU6GbfuR3cdoxykYMwwO0iNiAseMjcSrgxC18EaJpRWZDEV-ZESHFFegcRMRQLDlEGAEoJLaQsH8zOlqadHpBonMRwTqvAl0b1N5gpwfMsPMB0LA6xrlIeFFGMnpKbXZvpeaGVMy2U5_fv0FdnpjPq9aa87eDwju9pXRSvsOammiwwuEPDT6DL38xfUN6vB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Uncertainty+propagation+from+atmospheric+parameters+to+sparse+hyperspectral+unmixing&rft.au=Iordache%2C+Marian-Daniel&rft.au=Bhatia%2C+Nitin&rft.au=Bioucas-Dias%2C+Jose+M.&rft.au=Plaza%2C+Antonio&rft.date=2016-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=6133&rft.epage=6136&rft_id=info:doi/10.1109%2FIGARSS.2016.7730602&rft.externalDocID=7730602