Uncertainty propagation from atmospheric parameters to sparse hyperspectral unmixing
Sparse hyperspectral unmixing is a widely used technique in remote sensing data characterization. It aims at inferring, from a large spectral library, the pure spectral signatures (endmembers) present in each pixel of a hyperspectral image, jointly with their corresponding abundances. The input to s...
Saved in:
Published in | IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 6133 - 6136 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sparse hyperspectral unmixing is a widely used technique in remote sensing data characterization. It aims at inferring, from a large spectral library, the pure spectral signatures (endmembers) present in each pixel of a hyperspectral image, jointly with their corresponding abundances. The input to sparse unmixing is represented, thus, by a hyperspectral image acquired from a platform flying at high altitude and a spectral library compiled using laboratory measurements. The reflectance datacube results from a complex ensemble of algorithms which translate the digital numbers stored by the sensor to meaningful ground reflectance, including the removal of atmospheric influence. A recurrent question in the research community does not have an answer yet: how does the atmospheric composition at the time of the flight influence the fractional abundances retrieved via sparse unmixing? This is a fundamental question, as the atmospheric parameters are subject to uncertainties, being very difficult to know them in all pixels. In this paper, we investigate how the uncertainty in two atmospheric parameters: water vapor content and visibility range, propagates to the final abundance maps via atmospheric correction of the sensed image. Our experiments reveal that sparse unmixing is more robust to uncertainty in those parameters and performs better in terms of accuracy than unmixing with image-based endmembers. |
---|---|
AbstractList | Sparse hyperspectral unmixing is a widely used technique in remote sensing data characterization. It aims at inferring, from a large spectral library, the pure spectral signatures (endmembers) present in each pixel of a hyperspectral image, jointly with their corresponding abundances. The input to sparse unmixing is represented, thus, by a hyperspectral image acquired from a platform flying at high altitude and a spectral library compiled using laboratory measurements. The reflectance datacube results from a complex ensemble of algorithms which translate the digital numbers stored by the sensor to meaningful ground reflectance, including the removal of atmospheric influence. A recurrent question in the research community does not have an answer yet: how does the atmospheric composition at the time of the flight influence the fractional abundances retrieved via sparse unmixing? This is a fundamental question, as the atmospheric parameters are subject to uncertainties, being very difficult to know them in all pixels. In this paper, we investigate how the uncertainty in two atmospheric parameters: water vapor content and visibility range, propagates to the final abundance maps via atmospheric correction of the sensed image. Our experiments reveal that sparse unmixing is more robust to uncertainty in those parameters and performs better in terms of accuracy than unmixing with image-based endmembers. |
Author | Bioucas-Dias, Jose M. Iordache, Marian-Daniel Plaza, Antonio Bhatia, Nitin |
Author_xml | – sequence: 1 givenname: Marian-Daniel surname: Iordache fullname: Iordache, Marian-Daniel organization: Flemish Inst. for Technol. Res., Mol, Belgium – sequence: 2 givenname: Nitin surname: Bhatia fullname: Bhatia, Nitin organization: Flemish Inst. for Technol. Res., Mol, Belgium – sequence: 3 givenname: Jose M. surname: Bioucas-Dias fullname: Bioucas-Dias, Jose M. organization: Inst. de Telecomun. & Inst. Super. Tecnico, Univ. de Lisboa, Lisbon, Portugal – sequence: 4 givenname: Antonio surname: Plaza fullname: Plaza, Antonio organization: Dept. of Technol. of Comput. & Commun., Univ. of Extremadura, Caceres, Spain |
BookMark | eNotkMFuwjAQRN2qlUpov4CLfyB07U2c5IhQS5GQKhU4I8dZgyuSWLYrlb8vUjnNvDm8w2TsYRgHYmwmYC4ENK_r1eJru51LEGpeVQgK5B3LRAkNIKKs7tlEihLzCgCfWBbj97XUEmDCdvvBUEjaDenCfRi9PurkxoHbMPZcp36M_kTBGe510D0lCpGnkccrRuKni78OnkwK-sx_ht79uuH4zB6tPkd6ueWU7d_fdsuPfPO5Wi8Xm9yJqkx5q4zSWLam7BpdFkoq3UELaNu6tUZJUVvqsGk6QoDKkDVGdZ0wBdRoCyxwymb_XkdEBx9cr8PlcHsA_wBEEFUn |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS.2016.7730602 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 1509033327 9781509033324 |
EISSN | 2153-7003 |
EndPage | 6136 |
ExternalDocumentID | 7730602 |
Genre | orig-research |
GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-b6c6a35bc5d9a54626ad0b03fb8bfc6218fed399de3007cefcc6dd1c4083f4343 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:44:42 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-b6c6a35bc5d9a54626ad0b03fb8bfc6218fed399de3007cefcc6dd1c4083f4343 |
PageCount | 4 |
ParticipantIDs | ieee_primary_7730602 |
PublicationCentury | 2000 |
PublicationDate | 2016-July |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-July |
PublicationDecade | 2010 |
PublicationTitle | IEEE International Geoscience and Remote Sensing Symposium proceedings |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 1.6142583 |
Snippet | Sparse hyperspectral unmixing is a widely used technique in remote sensing data characterization. It aims at inferring, from a large spectral library, the pure... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6133 |
SubjectTerms | atmospheric correction Atmospheric measurements Atmospheric modeling Hyperspectral imaging Libraries Pollution measurement Reflectivity Sparse unmixing spectral libraries Uncertainty |
Title | Uncertainty propagation from atmospheric parameters to sparse hyperspectral unmixing |
URI | https://ieeexplore.ieee.org/document/7730602 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qQfDkRyt-swePJk26ySZ7FLGtQkVsC72VZHcWizaRNgHrr3d2kyqKB28hJEyyE-bNZOe9IeSSReAnEWCRE4vICVSgHRGCdIAhFggfuowZvvPwgQ8mwf00nDbI1RcXBgBs8xm45tDu5atcluZXWSfCz5Eb5cgtLNwqrtYm6jJEMq9WFfI90bnrXz-NRqZ1i7v1bT_mp1j46O2S4cZw1TXy4pZF6sqPX5qM_32yPdL-JurRxy8I2icNyA7Idt9O6123yHiCF9gt_2JN0TQGD-sIakglNCkW-cqoCswlNQrgC9MZs6JFTjHKLFdAn7FGraiYy-SVltli_o5W2mTSux3fDJx6jIIzx9ygcFIuecLCVIZKJGGAFUyivNRjOo1TLTlivAaFeYoChgmDBC0lV8qXAWZn2hBPD0kzyzM4IlTjS6JzuyyUEMReLDAZSwRWNTrCMoqxY9IyazN7q5QyZvWynPx9-pTsGP9Uza9npFksSzhHiC_SC-vbT9ziqHg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN40NUZPPlrj2z14FApdWOBojH1o2xjbJr01sDsbGy2YFhLrr3cWaI3GgzdCIAM7ZL4Zdr5vCLlmHtihB1jk-IFnONJRRuCCMIAhFgQ2NBnTfOf-gHfGzsPEnVTIzYYLAwB58xmY-jDfy5eJyPSvsoaHnyPXypFbiPuuXbC11nGXIZZZpa6QbQWNbvv2eTjUzVvcLG_8MUElB5DWHumvTRd9I69mlkam-PylyvjfZ9sn9W-qHn3agNABqUB8SLbb-bzeVY2MxnhBvumfriiaxvCRu4JqWgkN03my1LoCM0G1Bvhc98YsaZpQjDOLJdAXrFILMuYifKNZPJ99oJU6GbfuR3cdoxykYMwwO0iNiAseMjcSrgxC18EaJpRWZDEV-ZESHFFegcRMRQLDlEGAEoJLaQsH8zOlqadHpBonMRwTqvAl0b1N5gpwfMsPMB0LA6xrlIeFFGMnpKbXZvpeaGVMy2U5_fv0FdnpjPq9aa87eDwju9pXRSvsOammiwwuEPDT6DL38xfUN6vB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Uncertainty+propagation+from+atmospheric+parameters+to+sparse+hyperspectral+unmixing&rft.au=Iordache%2C+Marian-Daniel&rft.au=Bhatia%2C+Nitin&rft.au=Bioucas-Dias%2C+Jose+M.&rft.au=Plaza%2C+Antonio&rft.date=2016-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=6133&rft.epage=6136&rft_id=info:doi/10.1109%2FIGARSS.2016.7730602&rft.externalDocID=7730602 |