Multimodal autoencoder: A deep learning approach to filling in missing sensor data and enabling better mood prediction
To accomplish forecasting of mood in real-world situations, affective computing systems need to collect and learn from multimodal data collected over weeks or months of daily use. Such systems are likely to encounter frequent data loss, e.g. when a phone loses location access, or when a sensor is re...
Saved in:
Published in | International Conference on Affective Computing and Intelligent Interaction and workshops pp. 202 - 208 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To accomplish forecasting of mood in real-world situations, affective computing systems need to collect and learn from multimodal data collected over weeks or months of daily use. Such systems are likely to encounter frequent data loss, e.g. when a phone loses location access, or when a sensor is recharging. Lost data can handicap classifiers trained with all modalities present in the data. This paper describes a new technique for handling missing multimodal data using a specialized denoising autoencoder: the Multimodal Autoencoder (MMAE). Empirical results from over 200 participants and 5500 days of data demonstrate that the MMAE is able to predict the feature values from multiple missing modalities more accurately than reconstruction methods such as principal components analysis (PCA). We discuss several practical benefits of the MMAE's encoding and show that it can provide robust mood prediction even when up to three quarters of the data sources are lost. |
---|---|
AbstractList | To accomplish forecasting of mood in real-world situations, affective computing systems need to collect and learn from multimodal data collected over weeks or months of daily use. Such systems are likely to encounter frequent data loss, e.g. when a phone loses location access, or when a sensor is recharging. Lost data can handicap classifiers trained with all modalities present in the data. This paper describes a new technique for handling missing multimodal data using a specialized denoising autoencoder: the Multimodal Autoencoder (MMAE). Empirical results from over 200 participants and 5500 days of data demonstrate that the MMAE is able to predict the feature values from multiple missing modalities more accurately than reconstruction methods such as principal components analysis (PCA). We discuss several practical benefits of the MMAE's encoding and show that it can provide robust mood prediction even when up to three quarters of the data sources are lost. |
Author | Picard, Rosalind Taylor, Sara Sano, Akane Jaques, Natasha |
Author_xml | – sequence: 1 givenname: Natasha surname: Jaques fullname: Jaques, Natasha organization: Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 – sequence: 2 givenname: Sara surname: Taylor fullname: Taylor, Sara organization: Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 – sequence: 3 givenname: Akane surname: Sano fullname: Sano, Akane organization: Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 – sequence: 4 givenname: Rosalind surname: Picard fullname: Picard, Rosalind organization: Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 |
BookMark | eNotkEFLAzEUhKMo2Nb-APGSP7A1b7PZTb2VYrVQ8aLnkt33opHdZElSwX-v1Z5mGD6GYabswgdPjN2AWACI5d1qvd0uSgHNQpeNrAWcsSkoqWuhaqnO2aQEVRcaAK7YPKVPIQQsldBaTdjX86HPbghoem4OOZDvAlK85yuORCPvyUTv_Ds34xiD6T54Dty6vj9mzvPBpXS0iXwKkaPJhhuPnLxp_5iWcqbIhxCQj5HQddkFf80urekTzU86Y2-bh9f1U7F7edyuV7vCQaNy0dam1Fj9zrU1ghSASEKVStaV6kpLEqsKoOpaJazU2EnZKEkW28paq0UjZ-z2v9cR0X6MbjDxe3-6Sf4Ad_5fQg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ACII.2017.8273601 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) - NZ IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1538605635 9781538605639 |
EISSN | 2156-8111 |
EndPage | 208 |
ExternalDocumentID | 8273601 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-b6a28d4019f6d1301dde05253645c2fe3d44114cb50f38dc33753efdb4fff8073 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-b6a28d4019f6d1301dde05253645c2fe3d44114cb50f38dc33753efdb4fff8073 |
PageCount | 7 |
ParticipantIDs | ieee_primary_8273601 |
PublicationCentury | 2000 |
PublicationDate | 2017-Oct. |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct. |
PublicationDecade | 2010 |
PublicationTitle | International Conference on Affective Computing and Intelligent Interaction and workshops |
PublicationTitleAbbrev | ACII |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001950885 |
Score | 2.0486956 |
Snippet | To accomplish forecasting of mood in real-world situations, affective computing systems need to collect and learn from multimodal data collected over weeks or... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 202 |
SubjectTerms | Data models Mood Noise measurement Noise reduction Principal component analysis Stress Training |
Title | Multimodal autoencoder: A deep learning approach to filling in missing sensor data and enabling better mood prediction |
URI | https://ieeexplore.ieee.org/document/8273601 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbNzCSNKmdNGGrKqoWCcRApW6VnbNRBY2rkDDw67GdtAjEwBYlshL5HN-d7717hFzjMESaIHrcxNIe4yrzOE-4J2kU8FTyGGuU72M8nbP7RbRokZsdF0ZK6cBn0reXrpaPOqvsUVk_Mb42tmStPZO41Vyt7_MUJ2caNYXLMEj7o_FsZrFbQ78Z90NAxfmPSYc8bN9cw0Ze_aoUfvb5qynjfz_tgPS-mXrwtPNBh6Ql8yPS2Uo1QPPndsmHI9quNfI34FWpbftKlMUtjACl3EAjHvEC2x7jUGpQK9ewG1Y5mNVgDxXg3WS9ugCLKwWeI0hLvbIPhKMFwVprhE1hqz_W4j0yn9w9j6deI7ngrUwcUXoi5oMETc6VqhiNewvN7meV7myxMhsoSdGETyHLRBQoY-KMUpPuSIWCKaUSs10ck3auc3lCgKsIGTLBIpoyyQac8pgPkyCjCrkQeEq6dhqXm7qrxrKZwbO_b5-TfWvKGkZ3QdplUclLEw6U4sqtgy8swLi9 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbfvoNHNzbajc0bIRJQIB4g4UbavdYQZSNz8-Bfb7sNjMaDt2VLs6Wv63uv7_veR8gtdl2kAaLFdSxtMa4ii_OAW5J6Dg8l97FE-U794Zw9LrxFjdztuDBSygJ8Jm1zWdTyMYlyc1TWDrSv9Q1Za0_7fa9TsrW-T1QKQVOvKl26Ttju9Ucjg97q2tXIHxIqhQcZNMhk--4SOPJq55mwo89fbRn_-3GHpPXN1YPnnRc6IjUZH5PGVqwBqn-3ST4Kqu06Qf4GPM8S08ASZXoPPUApN1DJR7zAtss4ZAmoVdGyG1Yx6PVgjhXgXee9SQoGWQo8RpCGfGUeiIIYBOskQdikpv5jbN4i88HDrD-0KtEFa6UjicwSPu8EqLOuUPmoHZyr9z-jdWfKlVFHSYo6gHJZJDxHaSNHlOqERyoUTCkV6A3jhNTjJJanBLjykCETzKMhk6zDKfd5N3AiqpALgWekaaZxuSn7aiyrGTz_-_YN2R_OJuPleDR9uiAHxqwlqO6S1LM0l1c6OMjEdbEmvgD8GLwH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Multimodal+autoencoder%3A+A+deep+learning+approach+to+filling+in+missing+sensor+data+and+enabling+better+mood+prediction&rft.au=Jaques%2C+Natasha&rft.au=Taylor%2C+Sara&rft.au=Sano%2C+Akane&rft.au=Picard%2C+Rosalind&rft.date=2017-10-01&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=202&rft.epage=208&rft_id=info:doi/10.1109%2FACII.2017.8273601&rft.externalDocID=8273601 |