Multimodal autoencoder: A deep learning approach to filling in missing sensor data and enabling better mood prediction

To accomplish forecasting of mood in real-world situations, affective computing systems need to collect and learn from multimodal data collected over weeks or months of daily use. Such systems are likely to encounter frequent data loss, e.g. when a phone loses location access, or when a sensor is re...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Affective Computing and Intelligent Interaction and workshops pp. 202 - 208
Main Authors Jaques, Natasha, Taylor, Sara, Sano, Akane, Picard, Rosalind
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To accomplish forecasting of mood in real-world situations, affective computing systems need to collect and learn from multimodal data collected over weeks or months of daily use. Such systems are likely to encounter frequent data loss, e.g. when a phone loses location access, or when a sensor is recharging. Lost data can handicap classifiers trained with all modalities present in the data. This paper describes a new technique for handling missing multimodal data using a specialized denoising autoencoder: the Multimodal Autoencoder (MMAE). Empirical results from over 200 participants and 5500 days of data demonstrate that the MMAE is able to predict the feature values from multiple missing modalities more accurately than reconstruction methods such as principal components analysis (PCA). We discuss several practical benefits of the MMAE's encoding and show that it can provide robust mood prediction even when up to three quarters of the data sources are lost.
AbstractList To accomplish forecasting of mood in real-world situations, affective computing systems need to collect and learn from multimodal data collected over weeks or months of daily use. Such systems are likely to encounter frequent data loss, e.g. when a phone loses location access, or when a sensor is recharging. Lost data can handicap classifiers trained with all modalities present in the data. This paper describes a new technique for handling missing multimodal data using a specialized denoising autoencoder: the Multimodal Autoencoder (MMAE). Empirical results from over 200 participants and 5500 days of data demonstrate that the MMAE is able to predict the feature values from multiple missing modalities more accurately than reconstruction methods such as principal components analysis (PCA). We discuss several practical benefits of the MMAE's encoding and show that it can provide robust mood prediction even when up to three quarters of the data sources are lost.
Author Picard, Rosalind
Taylor, Sara
Sano, Akane
Jaques, Natasha
Author_xml – sequence: 1
  givenname: Natasha
  surname: Jaques
  fullname: Jaques, Natasha
  organization: Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
– sequence: 2
  givenname: Sara
  surname: Taylor
  fullname: Taylor, Sara
  organization: Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
– sequence: 3
  givenname: Akane
  surname: Sano
  fullname: Sano, Akane
  organization: Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
– sequence: 4
  givenname: Rosalind
  surname: Picard
  fullname: Picard, Rosalind
  organization: Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
BookMark eNotkEFLAzEUhKMo2Nb-APGSP7A1b7PZTb2VYrVQ8aLnkt33opHdZElSwX-v1Z5mGD6GYabswgdPjN2AWACI5d1qvd0uSgHNQpeNrAWcsSkoqWuhaqnO2aQEVRcaAK7YPKVPIQQsldBaTdjX86HPbghoem4OOZDvAlK85yuORCPvyUTv_Ds34xiD6T54Dty6vj9mzvPBpXS0iXwKkaPJhhuPnLxp_5iWcqbIhxCQj5HQddkFf80urekTzU86Y2-bh9f1U7F7edyuV7vCQaNy0dam1Fj9zrU1ghSASEKVStaV6kpLEqsKoOpaJazU2EnZKEkW28paq0UjZ-z2v9cR0X6MbjDxe3-6Sf4Ad_5fQg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACII.2017.8273601
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1538605635
9781538605639
EISSN 2156-8111
EndPage 208
ExternalDocumentID 8273601
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-b6a28d4019f6d1301dde05253645c2fe3d44114cb50f38dc33753efdb4fff8073
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:40 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b6a28d4019f6d1301dde05253645c2fe3d44114cb50f38dc33753efdb4fff8073
PageCount 7
ParticipantIDs ieee_primary_8273601
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle International Conference on Affective Computing and Intelligent Interaction and workshops
PublicationTitleAbbrev ACII
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001950885
Score 2.0486956
Snippet To accomplish forecasting of mood in real-world situations, affective computing systems need to collect and learn from multimodal data collected over weeks or...
SourceID ieee
SourceType Publisher
StartPage 202
SubjectTerms Data models
Mood
Noise measurement
Noise reduction
Principal component analysis
Stress
Training
Title Multimodal autoencoder: A deep learning approach to filling in missing sensor data and enabling better mood prediction
URI https://ieeexplore.ieee.org/document/8273601
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbNzCSNKmdNGGrKqoWCcRApW6VnbNRBY2rkDDw67GdtAjEwBYlshL5HN-d7717hFzjMESaIHrcxNIe4yrzOE-4J2kU8FTyGGuU72M8nbP7RbRokZsdF0ZK6cBn0reXrpaPOqvsUVk_Mb42tmStPZO41Vyt7_MUJ2caNYXLMEj7o_FsZrFbQ78Z90NAxfmPSYc8bN9cw0Ze_aoUfvb5qynjfz_tgPS-mXrwtPNBh6Ql8yPS2Uo1QPPndsmHI9quNfI34FWpbftKlMUtjACl3EAjHvEC2x7jUGpQK9ewG1Y5mNVgDxXg3WS9ugCLKwWeI0hLvbIPhKMFwVprhE1hqz_W4j0yn9w9j6deI7ngrUwcUXoi5oMETc6VqhiNewvN7meV7myxMhsoSdGETyHLRBQoY-KMUpPuSIWCKaUSs10ck3auc3lCgKsIGTLBIpoyyQac8pgPkyCjCrkQeEq6dhqXm7qrxrKZwbO_b5-TfWvKGkZ3QdplUclLEw6U4sqtgy8swLi9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbfvoNHNzbajc0bIRJQIB4g4UbavdYQZSNz8-Bfb7sNjMaDt2VLs6Wv63uv7_veR8gtdl2kAaLFdSxtMa4ii_OAW5J6Dg8l97FE-U794Zw9LrxFjdztuDBSygJ8Jm1zWdTyMYlyc1TWDrSv9Q1Za0_7fa9TsrW-T1QKQVOvKl26Ttju9Ucjg97q2tXIHxIqhQcZNMhk--4SOPJq55mwo89fbRn_-3GHpPXN1YPnnRc6IjUZH5PGVqwBqn-3ST4Kqu06Qf4GPM8S08ASZXoPPUApN1DJR7zAtss4ZAmoVdGyG1Yx6PVgjhXgXee9SQoGWQo8RpCGfGUeiIIYBOskQdikpv5jbN4i88HDrD-0KtEFa6UjicwSPu8EqLOuUPmoHZyr9z-jdWfKlVFHSYo6gHJZJDxHaSNHlOqERyoUTCkV6A3jhNTjJJanBLjykCETzKMhk6zDKfd5N3AiqpALgWekaaZxuSn7aiyrGTz_-_YN2R_OJuPleDR9uiAHxqwlqO6S1LM0l1c6OMjEdbEmvgD8GLwH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Multimodal+autoencoder%3A+A+deep+learning+approach+to+filling+in+missing+sensor+data+and+enabling+better+mood+prediction&rft.au=Jaques%2C+Natasha&rft.au=Taylor%2C+Sara&rft.au=Sano%2C+Akane&rft.au=Picard%2C+Rosalind&rft.date=2017-10-01&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=202&rft.epage=208&rft_id=info:doi/10.1109%2FACII.2017.8273601&rft.externalDocID=8273601