PCA based face recognition and testing criteria

In this work, we use the PCA based method to build a face recognition system with a recognition rate more than 97% for the ORL and 100% for the CMU databases. However, the main goal of this research is to identify the characteristics of face recognition rates while, i) the number of training and tes...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 2945 - 2949
Main Authors Poon, B., Amin, M.A., Hong Yan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we use the PCA based method to build a face recognition system with a recognition rate more than 97% for the ORL and 100% for the CMU databases. However, the main goal of this research is to identify the characteristics of face recognition rates while, i) the number of training and test data is varied; ii) the amount of noise in the training and test data is varied; iii) the level of blurriness in the training and test data is varied; iv) the image size in the training and test data is varied; and v) different databases are used with aligned images. We have observed that, i) in general the increase of the number of signature on images increases the recognition rate, however, the recognition rate saturates after a certain amount of increase; ii) the increase in the number of samples used in the calculation of covariance matrix increases the recognition accuracy for a given number of individuals to identify; iii) the increase in noise and blurriness affects the recognition accuracy; iv) the reduction in image-size has very minimal effect on the recognition accuracy; v) if less number of individuals are supposed to be recognized then the recognition accuracy increases; and vi) aligned images used increases the recognition accuracy.
AbstractList In this work, we use the PCA based method to build a face recognition system with a recognition rate more than 97% for the ORL and 100% for the CMU databases. However, the main goal of this research is to identify the characteristics of face recognition rates while, i) the number of training and test data is varied; ii) the amount of noise in the training and test data is varied; iii) the level of blurriness in the training and test data is varied; iv) the image size in the training and test data is varied; and v) different databases are used with aligned images. We have observed that, i) in general the increase of the number of signature on images increases the recognition rate, however, the recognition rate saturates after a certain amount of increase; ii) the increase in the number of samples used in the calculation of covariance matrix increases the recognition accuracy for a given number of individuals to identify; iii) the increase in noise and blurriness affects the recognition accuracy; iv) the reduction in image-size has very minimal effect on the recognition accuracy; v) if less number of individuals are supposed to be recognized then the recognition accuracy increases; and vi) aligned images used increases the recognition accuracy.
Author Poon, B.
Amin, M.A.
Hong Yan
Author_xml – sequence: 1
  givenname: B.
  surname: Poon
  fullname: Poon, B.
  organization: Sch. of Electr. & Inf. Eng., Univ. of Sydney, Sydney, NSW, Australia
– sequence: 2
  givenname: M.A.
  surname: Amin
  fullname: Amin, M.A.
– sequence: 3
  surname: Hong Yan
  fullname: Hong Yan
  organization: Sch. of Electr. & Inf. Eng., Univ. of Sydney, Sydney, NSW, Australia
BookMark eNo1j8tKxEAURFucASdjfkA3-YFk-t5-pZdD8DEQ0YWCu6EfN0OLJpJk498bcKxNUYtTVGVs1Q89MXYDvALgdndontqmQs5tpRBQWbhgGUiUUhgu8JLl1tT_GcWKbRA0L0GI9zXLFq62AFbhFcun6YMvkgqNFhu2e2n2hXcTxaJzgYqRwnDq05yGvnB9LGaa5tSfijCmmcbkrtm6c58T5Wffsrf7u9fmsWyfHw7Nvi0TGDWXXmuqI_kYtSEjUGouAG3tMEjrI0nvoAPVLZtRUSAvpHRktK95AG1JbNntX28iouP3mL7c-HM8nxe_TDZJxQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212591
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 2949
ExternalDocumentID 5212591
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-b66e8debdd67e73246031298a2c49bde4ba1f15f14225eceb344ae76b80c169e3
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:20:32 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b66e8debdd67e73246031298a2c49bde4ba1f15f14225eceb344ae76b80c169e3
PageCount 5
ParticipantIDs ieee_primary_5212591
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.5250361
Snippet In this work, we use the PCA based method to build a face recognition system with a recognition rate more than 97% for the ORL and 100% for the CMU databases....
SourceID ieee
SourceType Publisher
StartPage 2945
SubjectTerms Covariance matrix
Cybernetics
Data engineering
Eigen face
Electronic equipment testing
Face recognition
Image recognition
Linear discriminant analysis
Machine learning
Performance evaluation
Principal component analysis
Principle Component Analysis (PCA)
System testing
Title PCA based face recognition and testing criteria
URI https://ieeexplore.ieee.org/document/5212591
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJ09TN_GbHDyarUmbpDlKcUxxsoOD3UY-3ooInUh78deb9EsUD96aQkheQvt-5H2eB6FrHtyulRGxJg0SZrkkihlJLPWxBlADDXxs-SQW6-RhwzcDdNNjYQCgbj6DaXis7_LdzlahVDYLOFMeoOp7PnFrsFp9PSVQg8uWSqoeS5941IJ5jIqI-FRs0-G6YukdU0f31I7jDlATqdl9tnzMGirLdsUf0iu155mP0LLbc9Nw8jatSjO1n7_oHP9r1AGafGP88Kr3XodoAMURGnUiD7j95sdotspucfB1Dufaz-k7jnYF1oXDZaDpKF6w__sE2mc9Qev53XO2IK3KAnn1oUNJjBCQOjDOCQnSx1dBd5qpVDObKOMgMZrmlOehWMTB-uQ7STRIYdLIUqEgPkbDYlfACcIy4iaKfUzBfNKogGqaSD-fK84McyY-ReNg__a9IdLYtqaf_f36HO03VzehN_YCDcuPCi59BFCaq_rovwBygqXy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1VZYCpQIv4xgMjaWMnjpMRRVQtNFWHVupWxfYFIaS0QunCr8fOFwIxsMWRrMSSk3d3vvcewD23sKuE6ygZWguzTDgRk8JR1MQaSCVW9LFkHkxW_vOarzvw0HJhELFsPsOhvSzP8vVW7W2pbGR5ptxS1Q8M7nNWsbXaiooVBxe1mFQ5Fib1KC3zGA1cxyRj64bZ5QkDTY3gUz32GkqNG42mcTKLKzHL-pk_zFdK7Bn3IGneumo5eR_uCzlUn78EHf-7rGMYfLP8yKLFrxPoYH4KvcbmgdRffR9Gi_iRWLTTJEvNnLbnaJuTNNeksEId-Ssx_x8r_JwOYDV-WsYTp_ZZcN5M8FA4Mggw1Ci1DgQKE2FZ52kWhSlTfiQ1-jKlGeWZLRdxVCb99v0URSBDV9EgQu8Muvk2x3MgwuXS9UxUwUzaGCFNqS_MfB5xJpmW3gX07fo3u0pKY1Mv_fLv23dwOFkms81sOn-5gqPqIMd2yl5Dt_jY442JBwp5W26DL1kCqTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=PCA+based+face+recognition+and+testing+criteria&rft.au=Poon%2C+B.&rft.au=Amin%2C+M.A.&rft.au=Hong+Yan&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=5&rft.spage=2945&rft.epage=2949&rft_id=info:doi/10.1109%2FICMLC.2009.5212591&rft.externalDocID=5212591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon