G-CNN: An Iterative Grid Based Object Detector

We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2369 - 2377
Main Authors Najibi, Mahyar, Rastegari, Mohammad, Davis, Larry S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2016.260

Cover

Loading…
Abstract We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN which uses around 2K bounding boxes generated with a proposal technique. This strategy makes detection faster by removing the object proposal stage as well as reducing the number of boxes to be processed.
AbstractList We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN which uses around 2K bounding boxes generated with a proposal technique. This strategy makes detection faster by removing the object proposal stage as well as reducing the number of boxes to be processed.
Author Najibi, Mahyar
Rastegari, Mohammad
Davis, Larry S.
Author_xml – sequence: 1
  givenname: Mahyar
  surname: Najibi
  fullname: Najibi, Mahyar
  email: najibi@cs.umd.edu
  organization: Univ. of Maryland, College Park, MD, USA
– sequence: 2
  givenname: Mohammad
  surname: Rastegari
  fullname: Rastegari, Mohammad
  email: mrastega@cs.umd.edu
  organization: Univ. of Maryland, College Park, MD, USA
– sequence: 3
  givenname: Larry S.
  surname: Davis
  fullname: Davis, Larry S.
  email: lsd@umiacs.umd.edu
  organization: Univ. of Maryland, College Park, MD, USA
BookMark eNotzMFKw0AQANBVFKw1R09e9gcSZ3abmV1vNWoslFZEvZbZZBdSNJUkCP69gp7e7Z2rk_7QR6UuEQpE8NfV29NzYQCpMARHKvPscEFsnSsRj9UMgWxOHv2ZysZxDwDoyaHzM1XUebXZ3Ohlr1dTHGTqvqKuh67VtzLGVm_DPjaTvovTL4fhQp0meR9j9u9cvT7cv1SP-Xpbr6rlOu-QyykPhM4QQ1wEY0woEQKjF5NYgJESJ9caT9JAkqaBgNaWQQJxEgkOjZ2rq7-3izHuPofuQ4bvHbMDMt7-AFYPQrs
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.260
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 2377
ExternalDocumentID 7780629
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-b6182670e4b222b510b719a2f7a0716f7f8d296ac0facc0b1335bab67faab8123
IEDL.DBID RIE
IngestDate Wed Aug 27 01:54:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b6182670e4b222b510b719a2f7a0716f7f8d296ac0facc0b1335bab67faab8123
PageCount 9
ParticipantIDs ieee_primary_7780629
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.4461474
Snippet We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding...
SourceID ieee
SourceType Publisher
StartPage 2369
SubjectTerms Computer architecture
Detectors
Iterative methods
Object detection
Proposals
Strain
Training
Title G-CNN: An Iterative Grid Based Object Detector
URI https://ieeexplore.ieee.org/document/7780629
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2AkydUMH6nB4922V1ou_WmKKAJSIwYbqTTj4SYLAaXi7_edndZjPHgrZ1T06Z9b6YzbxC6CpXDFbCM2NAo0pM0JkATQ7paqIhaDZz72uHxhI1mvac5ndfQdVULY4zJk89M4If5X75eqY0PlXU4T0IWizqqO8etqNXaxVMEc9gjqnnXeTZMVD8Kse_GstPY7PTfpi8-sYsFsVen_NFZJQeWQRONt0sq8kneg00Ggfr6pdb43zXvo_auhA9PK3A6QDWTHqJmyTlxeaM_nWnb1mFra6FgSPqTyQ2-TfFjrrnsHkQ8XC81vnOQp_Ez-NgNvjdZHvFvo9ng4bU_ImVbBbJ0XCEjwLxPwUPTA0cOwF1K4JGQseXS8Q1muU10LJhUoZVKheC8WAoSGLdSguMD3SPUSFepOUZYm5iHzDoKB9ShoQALnIJIIkapETo6QS2_I4uPQjljUW7G6d_mM7TnT6RIxDpHjWy9MRcO8jO4zM_6Gxstprk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAq0CK-8cBI0iSt7ZgNCv2ANlSoRWyVL7alCilFJV349dhJmiLEwGbfZNmy37vz3TuErrzY4Apo6mhPxU5bkMABEiqnJXnsEy2BMVs7PIpof9p-fCNvFXRd1sIopbLkM-XaYfaXLxfxyobKmoyFHg34Fto2uE_8vFprE1Hh1KAPL-ct49tQXv4pBLYfy0Zls9l5Hb_Y1C7qBlaf8kdvlQxaujU0Wi8qzyh5d1cpuPHXL73G_656DzU2RXx4XMLTPqqo5ADVCtaJizv9aUzrxg5rWx25PacTRTf4NsGDTHXZPIm4t5xLfGdAT-JnsNEbfK_SLObfQNPuw6TTd4rGCs7csIXUAWq9CuapNhh6AOZaAvO5CDQThnFQzXQoA05F7GkRxx4YP5aAAMq0EGAYQesQVZNFoo4QlipgHtWGxAExeMhBAyPAQ58Sorj0j1Hd7sjsI9fOmBWbcfK3-RLt9Cej4Ww4iJ5O0a49nTwt6wxV0-VKnRsCkMJFdu7fBVyqAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=G-CNN%3A+An+Iterative+Grid+Based+Object+Detector&rft.au=Najibi%2C+Mahyar&rft.au=Rastegari%2C+Mohammad&rft.au=Davis%2C+Larry+S.&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2369&rft.epage=2377&rft_id=info:doi/10.1109%2FCVPR.2016.260&rft.externalDocID=7780629