G-CNN: An Iterative Grid Based Object Detector
We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2369 - 2377 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2016.260 |
Cover
Loading…
Abstract | We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN which uses around 2K bounding boxes generated with a proposal technique. This strategy makes detection faster by removing the object proposal stage as well as reducing the number of boxes to be processed. |
---|---|
AbstractList | We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN which uses around 2K bounding boxes generated with a proposal technique. This strategy makes detection faster by removing the object proposal stage as well as reducing the number of boxes to be processed. |
Author | Najibi, Mahyar Rastegari, Mohammad Davis, Larry S. |
Author_xml | – sequence: 1 givenname: Mahyar surname: Najibi fullname: Najibi, Mahyar email: najibi@cs.umd.edu organization: Univ. of Maryland, College Park, MD, USA – sequence: 2 givenname: Mohammad surname: Rastegari fullname: Rastegari, Mohammad email: mrastega@cs.umd.edu organization: Univ. of Maryland, College Park, MD, USA – sequence: 3 givenname: Larry S. surname: Davis fullname: Davis, Larry S. email: lsd@umiacs.umd.edu organization: Univ. of Maryland, College Park, MD, USA |
BookMark | eNotzMFKw0AQANBVFKw1R09e9gcSZ3abmV1vNWoslFZEvZbZZBdSNJUkCP69gp7e7Z2rk_7QR6UuEQpE8NfV29NzYQCpMARHKvPscEFsnSsRj9UMgWxOHv2ZysZxDwDoyaHzM1XUebXZ3Ohlr1dTHGTqvqKuh67VtzLGVm_DPjaTvovTL4fhQp0meR9j9u9cvT7cv1SP-Xpbr6rlOu-QyykPhM4QQ1wEY0woEQKjF5NYgJESJ9caT9JAkqaBgNaWQQJxEgkOjZ2rq7-3izHuPofuQ4bvHbMDMt7-AFYPQrs |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.260 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 2377 |
ExternalDocumentID | 7780629 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-b6182670e4b222b510b719a2f7a0716f7f8d296ac0facc0b1335bab67faab8123 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:54:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-b6182670e4b222b510b719a2f7a0716f7f8d296ac0facc0b1335bab67faab8123 |
PageCount | 9 |
ParticipantIDs | ieee_primary_7780629 |
PublicationCentury | 2000 |
PublicationDate | 2016-June |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.4461474 |
Snippet | We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2369 |
SubjectTerms | Computer architecture Detectors Iterative methods Object detection Proposals Strain Training |
Title | G-CNN: An Iterative Grid Based Object Detector |
URI | https://ieeexplore.ieee.org/document/7780629 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2AkydUMH6nB4922V1ou_WmKKAJSIwYbqTTj4SYLAaXi7_edndZjPHgrZ1T06Z9b6YzbxC6CpXDFbCM2NAo0pM0JkATQ7paqIhaDZz72uHxhI1mvac5ndfQdVULY4zJk89M4If5X75eqY0PlXU4T0IWizqqO8etqNXaxVMEc9gjqnnXeTZMVD8Kse_GstPY7PTfpi8-sYsFsVen_NFZJQeWQRONt0sq8kneg00Ggfr6pdb43zXvo_auhA9PK3A6QDWTHqJmyTlxeaM_nWnb1mFra6FgSPqTyQ2-TfFjrrnsHkQ8XC81vnOQp_Ez-NgNvjdZHvFvo9ng4bU_ImVbBbJ0XCEjwLxPwUPTA0cOwF1K4JGQseXS8Q1muU10LJhUoZVKheC8WAoSGLdSguMD3SPUSFepOUZYm5iHzDoKB9ShoQALnIJIIkapETo6QS2_I4uPQjljUW7G6d_mM7TnT6RIxDpHjWy9MRcO8jO4zM_6Gxstprk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAq0CK-8cBI0iSt7ZgNCv2ANlSoRWyVL7alCilFJV349dhJmiLEwGbfZNmy37vz3TuErrzY4Apo6mhPxU5bkMABEiqnJXnsEy2BMVs7PIpof9p-fCNvFXRd1sIopbLkM-XaYfaXLxfxyobKmoyFHg34Fto2uE_8vFprE1Hh1KAPL-ct49tQXv4pBLYfy0Zls9l5Hb_Y1C7qBlaf8kdvlQxaujU0Wi8qzyh5d1cpuPHXL73G_656DzU2RXx4XMLTPqqo5ADVCtaJizv9aUzrxg5rWx25PacTRTf4NsGDTHXZPIm4t5xLfGdAT-JnsNEbfK_SLObfQNPuw6TTd4rGCs7csIXUAWq9CuapNhh6AOZaAvO5CDQThnFQzXQoA05F7GkRxx4YP5aAAMq0EGAYQesQVZNFoo4QlipgHtWGxAExeMhBAyPAQ58Sorj0j1Hd7sjsI9fOmBWbcfK3-RLt9Cej4Ww4iJ5O0a49nTwt6wxV0-VKnRsCkMJFdu7fBVyqAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=G-CNN%3A+An+Iterative+Grid+Based+Object+Detector&rft.au=Najibi%2C+Mahyar&rft.au=Rastegari%2C+Mohammad&rft.au=Davis%2C+Larry+S.&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2369&rft.epage=2377&rft_id=info:doi/10.1109%2FCVPR.2016.260&rft.externalDocID=7780629 |