Rethinking Automatic Chord Recognition with Convolutional Neural Networks
Despite early success in automatic chord recognition, recent efforts are yielding diminishing returns while basically iterating over the same fundamental approach. Here, we abandon typical conventions and adopt a different perspective of the problem, where several seconds of pitch spectra are classi...
Saved in:
Published in | 2012 Eleventh International Conference on Machine Learning and Applications Vol. 2; pp. 357 - 362 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 1467346519 9781467346511 |
DOI | 10.1109/ICMLA.2012.220 |
Cover
Abstract | Despite early success in automatic chord recognition, recent efforts are yielding diminishing returns while basically iterating over the same fundamental approach. Here, we abandon typical conventions and adopt a different perspective of the problem, where several seconds of pitch spectra are classified directly by a convolutional neural network. Using labeled data to train the system in a supervised manner, we achieve state of the art performance through this initial effort in an otherwise unexplored area. Subsequent error analysis provides insight into potential areas of improvement, and this approach to chord recognition shows promise for future harmonic analysis systems. |
---|---|
AbstractList | Despite early success in automatic chord recognition, recent efforts are yielding diminishing returns while basically iterating over the same fundamental approach. Here, we abandon typical conventions and adopt a different perspective of the problem, where several seconds of pitch spectra are classified directly by a convolutional neural network. Using labeled data to train the system in a supervised manner, we achieve state of the art performance through this initial effort in an otherwise unexplored area. Subsequent error analysis provides insight into potential areas of improvement, and this approach to chord recognition shows promise for future harmonic analysis systems. |
Author | Humphrey, E. J. Bello, J. P. |
Author_xml | – sequence: 1 givenname: E. J. surname: Humphrey fullname: Humphrey, E. J. email: ejhumphrey@nyu.edu organization: Music & Audio Res. Lab. (MARL), New York Univ., New York, NY, USA – sequence: 2 givenname: J. P. surname: Bello fullname: Bello, J. P. email: jpbello@nyu.edu organization: Music & Audio Res. Lab. (MARL), New York Univ., New York, NY, USA |
BookMark | eNotjMlOwzAABY0ACVpy5cLFP9Dg3fExilgiBZAqOFdObDemqY0Sh4q_pyynkZ7mzQKchRgsANcY5RgjdVtXT02ZE4RJTgg6AZmSBZJCcaYwJadggZmQlAmO1QXIpukdIXQ8CsrYJajXNvU-7HzYwnJOca-T72DVx9HAte3iNvjkY4AHn3pYxfAZh_ln0AN8tvP4i3SI4266AudOD5PN_rkEb_d3r9Xjqnl5qKuyWXkseVq1nHcaW6ENQU52BVOUckslQo52lOEWi8IyY4QWRh21FruiIMJI2WpmnKNLcPPX9dbazcfo93r82giGhBSEfgOgGU_9 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLA.2012.220 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9780769549132 0769549136 |
EndPage | 362 |
ExternalDocumentID | 6406762 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-b55ca1e6ad20f7c849335e3700f3c341b168e4dd6a6d9e6ab1f8826d77ba4dff3 |
IEDL.DBID | RIE |
ISBN | 1467346519 9781467346511 |
IngestDate | Wed Aug 27 03:56:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-b55ca1e6ad20f7c849335e3700f3c341b168e4dd6a6d9e6ab1f8826d77ba4dff3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6406762 |
PublicationCentury | 2000 |
PublicationDate | 2012-Dec. |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2012 Eleventh International Conference on Machine Learning and Applications |
PublicationTitleAbbrev | icmla |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001106344 |
Score | 1.8714943 |
Snippet | Despite early success in automatic chord recognition, recent efforts are yielding diminishing returns while basically iterating over the same fundamental... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 357 |
SubjectTerms | Accuracy automatic music transcription chord recognition Computer architecture convolutional neural nets Kernel Neural networks Training Training data Vectors |
Title | Rethinking Automatic Chord Recognition with Convolutional Neural Networks |
URI | https://ieeexplore.ieee.org/document/6406762 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4MwGG7mTp6mbsbv9OBRGNDSwnFZXDbjjFlcstvS0jYzGjAKHvz1vi2wGePBE9AAadrC-9HnfR6ErsFH1oRR5kU8lB5ldn83JtKTRkSxAH9BaVvgPH9g0yW9W8WrDrrZ1sJorR34TPv21O3lqyKrbKpsyMD6cPvD3YNlVtdq7fIpENsQSl3tFuPESnynLaVTcx02pI1hkA5n4_n9yCK7Ij-yWt8_pFWcZZn00LztUw0oefGrUvrZ1y-6xv92-gANdjV8-HFrnQ5RR-dHqNeKOODmm-6j2UKXm1pAAY-qsnAUrni8gaAUL1p0UZFjm7DF8O7PZq2KV2yJPdzBIck_Bmg5uX0aT71GX8F7Bqeh9GQcZyLUTKgoMDxLaEpIrAkPAkMysG4yZImmSjHBVAq3ydCAP84U51JQZQw5Rt28yPUJwoTrCJ40QicQn8QKgkACzlsQZiINDFOnqG9HZv1WU2ism0E5-7v5HO3bmalRIxeoW75X-hJsfymv3KR_A2Fxq0Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvSECsZve_DoYFu_2JEQCSgjhkDCjbRrG4xmM7p58NfbdhsY48HTPrItTdftfd72eZ8HgFuDkRWimHohC4SHqV3fJUh4QvOQcIMXpLIFzvGMjpf4YUVWDXC3rYVRSjnymeraXbeWL7OksFNlPWqiD7M_3D0T9zEpq7V2Myomu0EYu-otypA1-Y5qUafqOKhkGwM_6k2G8XRguV1hN7Ru3z_MVVxsGbVAXLeqpJS8dItcdJOvX4KN_232Iejsqvjg0zY-HYGGSo9Bq7ZxgNVX3QaTuco3pYUCHBR55kRc4XBj0lI4r_lFWQrtlC00z_6sRit_hVbaw20cl_yjA5aj-8Vw7FUOC96zgQ25JwhJeKAol6GvWdLHEUJEIeb7GiUmvomA9hWWknIqI3OZCLRB5FQyJjiWWqMT0EyzVJ0CiJgKzZ2aq77JUIg0aSAy8M0PEh75msoz0LY9s34rRTTWVaec_336BuyPF_F0PZ3MHi_AgX1LJYfkEjTz90JdGSSQi2s3AL4BjAaukQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Eleventh+International+Conference+on+Machine+Learning+and+Applications&rft.atitle=Rethinking+Automatic+Chord+Recognition+with+Convolutional+Neural+Networks&rft.au=Humphrey%2C+E.+J.&rft.au=Bello%2C+J.+P.&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467346511&rft.volume=2&rft.spage=357&rft.epage=362&rft_id=info:doi/10.1109%2FICMLA.2012.220&rft.externalDocID=6406762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467346511/sc.gif&client=summon&freeimage=true |