Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification

Person re-identification (re-ID) models trained on one domain often fail to generalize well to another. In our attempt, we present a "learning via translation" framework. In the baseline, we translate the labeled images from source to target domain in an unsupervised manner. We then train...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 994 - 1003
Main Authors Deng, Weijian, Zheng, Liang, Ye, Qixiang, Kang, Guoliang, Yang, Yi, Jiao, Jianbin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Person re-identification (re-ID) models trained on one domain often fail to generalize well to another. In our attempt, we present a "learning via translation" framework. In the baseline, we translate the labeled images from source to target domain in an unsupervised manner. We then train re-ID models with the translated images by supervised methods. Yet, being an essential part of this framework, unsupervised image-image translation suffers from the information loss of source-domain labels during translation. Our motivation is two-fold. First, for each image, the discriminative cues contained in its ID label should be maintained after translation. Second, given the fact that two domains have entirely different persons, a translated image should be dissimilar to any of the target IDs. To this end, we propose to preserve two types of unsupervised similarities, 1) self-similarity of an image before and after translation, and 2) domain-dissimilarity of a translated source image and a target image. Both constraints are implemented in the similarity preserving generative adversarial network (SPGAN) which consists of an Siamese network and a CycleGAN. Through domain adaptation experiment, we show that images generated by SPGAN are more suitable for domain adaptation and yield consistent and competitive re-ID accuracy on two large-scale datasets.
AbstractList Person re-identification (re-ID) models trained on one domain often fail to generalize well to another. In our attempt, we present a "learning via translation" framework. In the baseline, we translate the labeled images from source to target domain in an unsupervised manner. We then train re-ID models with the translated images by supervised methods. Yet, being an essential part of this framework, unsupervised image-image translation suffers from the information loss of source-domain labels during translation. Our motivation is two-fold. First, for each image, the discriminative cues contained in its ID label should be maintained after translation. Second, given the fact that two domains have entirely different persons, a translated image should be dissimilar to any of the target IDs. To this end, we propose to preserve two types of unsupervised similarities, 1) self-similarity of an image before and after translation, and 2) domain-dissimilarity of a translated source image and a target image. Both constraints are implemented in the similarity preserving generative adversarial network (SPGAN) which consists of an Siamese network and a CycleGAN. Through domain adaptation experiment, we show that images generated by SPGAN are more suitable for domain adaptation and yield consistent and competitive re-ID accuracy on two large-scale datasets.
Author Kang, Guoliang
Jiao, Jianbin
Zheng, Liang
Deng, Weijian
Ye, Qixiang
Yang, Yi
Author_xml – sequence: 1
  givenname: Weijian
  surname: Deng
  fullname: Deng, Weijian
– sequence: 2
  givenname: Liang
  surname: Zheng
  fullname: Zheng, Liang
– sequence: 3
  givenname: Qixiang
  surname: Ye
  fullname: Ye, Qixiang
– sequence: 4
  givenname: Guoliang
  surname: Kang
  fullname: Kang, Guoliang
– sequence: 5
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
– sequence: 6
  givenname: Jianbin
  surname: Jiao
  fullname: Jiao, Jianbin
BookMark eNpFjEtLAzEYRaMoWGvXLtzkD6TmPcmytD4KBYdW3Zak-aKRzkxJBqX_3lILbu6Fe7jnGl20XQsI3TI6Zoza--l7vRxzysyY0sNwhka2MkwJo7Xk1J6jAaNaEG2ZvUKjUr4opVwbYaQaoDxv3AeQY-JZ17jU4klwu971qWvxT-o_cZ2hQP6GgFewjWSVmrR1OfV77NpwOpFZKuUfxC7jGnI5KJZAUoC2TzFtjtIbdBndtsDo1EP09vjwOn0mi5en-XSyIIlVqideMSG55sJHgIpZqKzbaBcU4z4qE6QVGysF0BidrkB4b6T3TktteGAQxBDd_XkTAKx3OTUu79dGVYZTI34BJONepg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00110
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 1003
ExternalDocumentID 8578208
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-b51342623bfee719e79ac6ad512bf58d493c943e0ffa67e3bb84bba64682d1ed3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b51342623bfee719e79ac6ad512bf58d493c943e0ffa67e3bb84bba64682d1ed3
PageCount 10
ParticipantIDs ieee_primary_8578208
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6167095
Snippet Person re-identification (re-ID) models trained on one domain often fail to generalize well to another. In our attempt, we present a "learning via translation"...
SourceID ieee
SourceType Publisher
StartPage 994
SubjectTerms Estimation
Gallium nitride
Generative adversarial networks
Generators
Learning systems
Training
Training data
Title Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification
URI https://ieeexplore.ieee.org/document/8578208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6QkydUMP5ODx4tbGvXdUcDEjXBEBTDjbTrW7Iog-C4-NfbdhWi8eBl2da9pmm3ve-9971XhK4DrZMIYklARLaotkyIgpwTHkQy4jQ0zdbfMXri91P2OItnDXSzzYUBAEc-g649dbF8vcw21lXWE7b2us3s3TOGW52rtfWnRFxQ4SNk9poay4anwlfzCYO0138dTyyXS7joQ_BjOxWnTYYtNPoeR00ieetuKtXNPn-VaPzvQA9QZ5e3h8dbjXSIGlAeoZYHmth_xh9ttH5YmN8IcUc8WC5kUeJbLVd1WB5b3yy23AzLhjRy8J6T52JRGCPYYHYsS-2FyMAs267B4F88dggeT4AU2hORXKcdNB3evfTvid98gRQGUVRExSG11eqpygGSMIUklRmX2gAElcdCs5RmKaMQ5LnkCVClBFNKcsZFpEPQ9Bg1y2UJJwhHuTBAIgtYmDJmpETOEmkeploYVUnDU9S2Uzhf1fU15n72zv6-fY727SLWdK0L1KzWG7g0wKBSV-6N-AKiYriu
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRwrZ2XXc0oAEFQhAMN9Kub8miDILj4l9vu02IxoOXZVvXpmm3va_vfe8rQreO1oEHviQgPCuqLQOiIOaEO570OHVNsfV3DIa8O2VPM39WQXfbXBgAyMln0LSneSxfL6ONdZW1hNVet5m9e8bu-16RrbX1qHhcUFHGyOw1NWsbHopSz8d1wlb7dTS2bC6Rxx-cHxuq5PbksYYG3z0paCRvzU2mmtHnL5HG_3b1EDV2mXt4tLVJR6gC6TGqlVATlx_yRx2tewvzIyH5EXeWC5mk-F7LVRGYx9Y7iy07w_IhTT14j8lLskjMMtigdixTXVYiHTNxuwKDgPEox_B4DCTRJRUpb7SBpo8Pk3aXlNsvkMRgiowo36VWr56qGCBwQwhCGXGpDURQsS80C2kUMgpOHEseAFVKMKUkZ1x42gVNT1A1XaZwirAXCwMlIoe5IWOmlohZIM3DVAtjLKl7hup2COerQmFjXo7e-d-3b9B-dzLoz_u94fMFOrATWpC3LlE1W2_gysCETF3nb8cXcym7-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Image-Image+Domain+Adaptation+with+Preserved+Self-Similarity+and+Domain-Dissimilarity+for+Person+Re-identification&rft.au=Deng%2C+Weijian&rft.au=Zheng%2C+Liang&rft.au=Ye%2C+Qixiang&rft.au=Kang%2C+Guoliang&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=994&rft.epage=1003&rft_id=info:doi/10.1109%2FCVPR.2018.00110&rft.externalDocID=8578208