New evaluation criteria for the convergence of continuous evolutionary algorithms

The first hitting time (FHT) plays an important role in convergence evaluation for evolutionary algorithms. However, the current criteria of the FHT are mostly under a hypothesis that never has been testified: the FHT subjects to the normal distribution. Aiming at more convincible evaluations, this...

Full description

Saved in:
Bibliographic Details
Published in2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) pp. 2431 - 2438
Main Authors Ying Lin, Jian Huang, Jun Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2008
Subjects
Online AccessGet full text
ISBN1424418224
9781424418220
ISSN1089-778X
DOI10.1109/CEC.2008.4631123

Cover

Abstract The first hitting time (FHT) plays an important role in convergence evaluation for evolutionary algorithms. However, the current criteria of the FHT are mostly under a hypothesis that never has been testified: the FHT subjects to the normal distribution. Aiming at more convincible evaluations, this paper investigates the distribution of the FHT through a goodness-of-fit test and discovers an unexpected result. Based on this result, this paper proposes a new set of criteria, which utilizes two types of relative frequency histograms. This paper validates the proposed criteria on the optimization problem of benchmark functions by the standard genetic algorithm (SGA) and the particle swarm optimization (PSO). The experiments show that the proposed criteria are effective to evaluate the convergent speed and the convergent stability of the evolutionary algorithms.
AbstractList The first hitting time (FHT) plays an important role in convergence evaluation for evolutionary algorithms. However, the current criteria of the FHT are mostly under a hypothesis that never has been testified: the FHT subjects to the normal distribution. Aiming at more convincible evaluations, this paper investigates the distribution of the FHT through a goodness-of-fit test and discovers an unexpected result. Based on this result, this paper proposes a new set of criteria, which utilizes two types of relative frequency histograms. This paper validates the proposed criteria on the optimization problem of benchmark functions by the standard genetic algorithm (SGA) and the particle swarm optimization (PSO). The experiments show that the proposed criteria are effective to evaluate the convergent speed and the convergent stability of the evolutionary algorithms.
Author Jun Zhang
Ying Lin
Jian Huang
Author_xml – sequence: 1
  surname: Ying Lin
  fullname: Ying Lin
  organization: Dept. of Comput. Sci., SUN Yat-sen Univ., Guangzhou
– sequence: 2
  surname: Jian Huang
  fullname: Jian Huang
  organization: Dept. of Comput. Sci., SUN Yat-sen Univ., Guangzhou
– sequence: 3
  surname: Jun Zhang
  fullname: Jun Zhang
  organization: Dept. of Comput. Sci., SUN Yat-sen Univ., Guangzhou
BookMark eNo1kE1LAzEYhCO2YFt7F7zkD2zNm7y7mxxlqR9QFEHBW8lm37SR7Ub2o-K_d4s6l2EOzzDMnE2a2BBjVyBWAMLcFOtiJYXQK8wUgFRnbGlyDSgRQUuVn7P5f5A4YTMQ2iR5rt-nbD5yuRF5ZvQFW3bdhxiFqcpAztjLE31xOtp6sH2IDXdt6KkNlvvY8n5P3MXmSO2OGkc8-lPsQzPEoRupWA8nyLbf3Na7OKL7Q3fJpt7WHS3_fMHe7tavxUOyeb5_LG43SYA87ZMS0ajMgETjUou6Mq70lRQWhbaZFgS6VK6SSMZVzoPzAi2mlS9NaQWkasGuf3sDEW0_23AYd2z_7lE_L2BXxA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2008.4631123
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9781424418237
1424418232
EndPage 2438
ExternalDocumentID 4631123
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i175t-b4493691249c5a48d9cbfd20a408a680e18b3cd24e9cdcf1cf04a45dfb9ba0153
IEDL.DBID RIE
ISBN 1424418224
9781424418220
ISSN 1089-778X
IngestDate Wed Aug 27 01:43:54 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCN 2007907698
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b4493691249c5a48d9cbfd20a408a680e18b3cd24e9cdcf1cf04a45dfb9ba0153
PageCount 8
ParticipantIDs ieee_primary_4631123
PublicationCentury 2000
PublicationDate 2008-June
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-June
PublicationDecade 2000
PublicationTitle 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
PublicationTitleAbbrev CEC
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453612
ssj0014519
Score 1.6695033
Snippet The first hitting time (FHT) plays an important role in convergence evaluation for evolutionary algorithms. However, the current criteria of the FHT are mostly...
SourceID ieee
SourceType Publisher
StartPage 2431
SubjectTerms Artificial neural networks
Evolutionary computation
Gaussian distribution
Histograms
Optimization
Probability density function
Statistical analysis
Title New evaluation criteria for the convergence of continuous evolutionary algorithms
URI https://ieeexplore.ieee.org/document/4631123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL0BVrpBAeM7s3BpoY9pmVkTCDHRaCIJOzJPJSo10C70673TB6hx4a7TZNJ2ejtzeufccwCuDP6g6dgyT4XceNRw7rHEDj3BQ-lHYaCVKtQ-75LpjN7M43kDrre1MMaYgnxm-u6w2MvXqcpdqmxAkwjhQdSEJoZZWau1zacgNImSnXSUM6DlJbmeI4Jk87qoK3C0yVrrqWr79f6lzwej8ahkWFYX--G6Uiw6kzbc1rdbck1e-nkm--rzl5Ljf5_nAHq78j5yv124DqFhVh1o1_4OpPrcO7D_TaywCw84H5KdODjB6cbpPAuCsJcgjCQFgb2o5TQkta6ZLVd5mm-wVxXgYv1BxOtTil2f3zY9mE3Gj6OpVxkyeEtEGZknKXX-f86vWsWCMs2VtDr0BfWZSJhvAiYjpUN85UorGyjrU0FjbSWXAnFHdAStVboyx0Ck0YpZK32TWBqJmIVyqBhTzCCkUZydQNeN1-K91NxYVEN1-vfpM9greRwuO3IOrWydmwsEC5m8LKLkC_MBue4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGH6DeFAvKGj8tgePDsbWjfZMIKhANIGEG-mnEnUzsB3019vuA9R48LYuabZ1Xd9nb5_3eQCulflBk4EmjvCocrCi1CGh7jiMetz1vbYUIlP7HIeDKb6bBbMK3KxrYZRSGflMNe1htpcvY5HaVFkLh76BB_4WbJu4j4O8WmudUTHgxA834lHWgpbm9HpqMCSZlWVdbUucLNWeirZb7mC6tNXtdXOOZXG5H74rWdjp12BU3nDONnlppglvis9fWo7_faJ9ONwU-KGHdeg6gIqK6lArHR5Q8cHXYe-bXGEDHs2KiDby4MgsOFbpmSEDfJEBkiijsGfVnArF2jaTRZTG6cr0KqY4W34g9voUm67Pb6tDmPZ7k-7AKSwZnIXBGYnDMbYOgNaxWgQME0kF19JzGXYJC4mr2oT7QnrmpQspdFtoFzMcSM0pZwZ5-EdQjeJIHQPiSgqiNXdVqLHPAuLxjiBEEGVAjaDkBBp2vObvuerGvBiq079PX8HOYDIazoe34_sz2M1ZHTZXcg7VZJmqCwMdEn6ZzZgv4b69Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+Congress+on+Evolutionary+Computation+%28IEEE+World+Congress+on+Computational+Intelligence%29&rft.atitle=New+evaluation+criteria+for+the+convergence+of+continuous+evolutionary+algorithms&rft.au=Ying+Lin&rft.au=Jian+Huang&rft.au=Jun+Zhang&rft.date=2008-06-01&rft.pub=IEEE&rft.isbn=9781424418220&rft.issn=1089-778X&rft.spage=2431&rft.epage=2438&rft_id=info:doi/10.1109%2FCEC.2008.4631123&rft.externalDocID=4631123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon