New evaluation criteria for the convergence of continuous evolutionary algorithms
The first hitting time (FHT) plays an important role in convergence evaluation for evolutionary algorithms. However, the current criteria of the FHT are mostly under a hypothesis that never has been testified: the FHT subjects to the normal distribution. Aiming at more convincible evaluations, this...
Saved in:
Published in | 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) pp. 2431 - 2438 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2008
|
Subjects | |
Online Access | Get full text |
ISBN | 1424418224 9781424418220 |
ISSN | 1089-778X |
DOI | 10.1109/CEC.2008.4631123 |
Cover
Abstract | The first hitting time (FHT) plays an important role in convergence evaluation for evolutionary algorithms. However, the current criteria of the FHT are mostly under a hypothesis that never has been testified: the FHT subjects to the normal distribution. Aiming at more convincible evaluations, this paper investigates the distribution of the FHT through a goodness-of-fit test and discovers an unexpected result. Based on this result, this paper proposes a new set of criteria, which utilizes two types of relative frequency histograms. This paper validates the proposed criteria on the optimization problem of benchmark functions by the standard genetic algorithm (SGA) and the particle swarm optimization (PSO). The experiments show that the proposed criteria are effective to evaluate the convergent speed and the convergent stability of the evolutionary algorithms. |
---|---|
AbstractList | The first hitting time (FHT) plays an important role in convergence evaluation for evolutionary algorithms. However, the current criteria of the FHT are mostly under a hypothesis that never has been testified: the FHT subjects to the normal distribution. Aiming at more convincible evaluations, this paper investigates the distribution of the FHT through a goodness-of-fit test and discovers an unexpected result. Based on this result, this paper proposes a new set of criteria, which utilizes two types of relative frequency histograms. This paper validates the proposed criteria on the optimization problem of benchmark functions by the standard genetic algorithm (SGA) and the particle swarm optimization (PSO). The experiments show that the proposed criteria are effective to evaluate the convergent speed and the convergent stability of the evolutionary algorithms. |
Author | Jun Zhang Ying Lin Jian Huang |
Author_xml | – sequence: 1 surname: Ying Lin fullname: Ying Lin organization: Dept. of Comput. Sci., SUN Yat-sen Univ., Guangzhou – sequence: 2 surname: Jian Huang fullname: Jian Huang organization: Dept. of Comput. Sci., SUN Yat-sen Univ., Guangzhou – sequence: 3 surname: Jun Zhang fullname: Jun Zhang organization: Dept. of Comput. Sci., SUN Yat-sen Univ., Guangzhou |
BookMark | eNo1kE1LAzEYhCO2YFt7F7zkD2zNm7y7mxxlqR9QFEHBW8lm37SR7Ub2o-K_d4s6l2EOzzDMnE2a2BBjVyBWAMLcFOtiJYXQK8wUgFRnbGlyDSgRQUuVn7P5f5A4YTMQ2iR5rt-nbD5yuRF5ZvQFW3bdhxiFqcpAztjLE31xOtp6sH2IDXdt6KkNlvvY8n5P3MXmSO2OGkc8-lPsQzPEoRupWA8nyLbf3Na7OKL7Q3fJpt7WHS3_fMHe7tavxUOyeb5_LG43SYA87ZMS0ajMgETjUou6Mq70lRQWhbaZFgS6VK6SSMZVzoPzAi2mlS9NaQWkasGuf3sDEW0_23AYd2z_7lE_L2BXxA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CEC.2008.4631123 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 9781424418237 1424418232 |
EndPage | 2438 |
ExternalDocumentID | 4631123 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IE 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 |
ID | FETCH-LOGICAL-i175t-b4493691249c5a48d9cbfd20a408a680e18b3cd24e9cdcf1cf04a45dfb9ba0153 |
IEDL.DBID | RIE |
ISBN | 1424418224 9781424418220 |
ISSN | 1089-778X |
IngestDate | Wed Aug 27 01:43:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCN | 2007907698 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-b4493691249c5a48d9cbfd20a408a680e18b3cd24e9cdcf1cf04a45dfb9ba0153 |
PageCount | 8 |
ParticipantIDs | ieee_primary_4631123 |
PublicationCentury | 2000 |
PublicationDate | 2008-June |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-June |
PublicationDecade | 2000 |
PublicationTitle | 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) |
PublicationTitleAbbrev | CEC |
PublicationYear | 2008 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000453612 ssj0014519 |
Score | 1.6695033 |
Snippet | The first hitting time (FHT) plays an important role in convergence evaluation for evolutionary algorithms. However, the current criteria of the FHT are mostly... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2431 |
SubjectTerms | Artificial neural networks Evolutionary computation Gaussian distribution Histograms Optimization Probability density function Statistical analysis |
Title | New evaluation criteria for the convergence of continuous evolutionary algorithms |
URI | https://ieeexplore.ieee.org/document/4631123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL0BVrpBAeM7s3BpoY9pmVkTCDHRaCIJOzJPJSo10C70673TB6hx4a7TZNJ2ejtzeufccwCuDP6g6dgyT4XceNRw7rHEDj3BQ-lHYaCVKtQ-75LpjN7M43kDrre1MMaYgnxm-u6w2MvXqcpdqmxAkwjhQdSEJoZZWau1zacgNImSnXSUM6DlJbmeI4Jk87qoK3C0yVrrqWr79f6lzwej8ahkWFYX--G6Uiw6kzbc1rdbck1e-nkm--rzl5Ljf5_nAHq78j5yv124DqFhVh1o1_4OpPrcO7D_TaywCw84H5KdODjB6cbpPAuCsJcgjCQFgb2o5TQkta6ZLVd5mm-wVxXgYv1BxOtTil2f3zY9mE3Gj6OpVxkyeEtEGZknKXX-f86vWsWCMs2VtDr0BfWZSJhvAiYjpUN85UorGyjrU0FjbSWXAnFHdAStVboyx0Ck0YpZK32TWBqJmIVyqBhTzCCkUZydQNeN1-K91NxYVEN1-vfpM9greRwuO3IOrWydmwsEC5m8LKLkC_MBue4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGH6DeFAvKGj8tgePDsbWjfZMIKhANIGEG-mnEnUzsB3019vuA9R48LYuabZ1Xd9nb5_3eQCulflBk4EmjvCocrCi1CGh7jiMetz1vbYUIlP7HIeDKb6bBbMK3KxrYZRSGflMNe1htpcvY5HaVFkLh76BB_4WbJu4j4O8WmudUTHgxA834lHWgpbm9HpqMCSZlWVdbUucLNWeirZb7mC6tNXtdXOOZXG5H74rWdjp12BU3nDONnlppglvis9fWo7_faJ9ONwU-KGHdeg6gIqK6lArHR5Q8cHXYe-bXGEDHs2KiDby4MgsOFbpmSEDfJEBkiijsGfVnArF2jaTRZTG6cr0KqY4W34g9voUm67Pb6tDmPZ7k-7AKSwZnIXBGYnDMbYOgNaxWgQME0kF19JzGXYJC4mr2oT7QnrmpQspdFtoFzMcSM0pZwZ5-EdQjeJIHQPiSgqiNXdVqLHPAuLxjiBEEGVAjaDkBBp2vObvuerGvBiq079PX8HOYDIazoe34_sz2M1ZHTZXcg7VZJmqCwMdEn6ZzZgv4b69Ow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+Congress+on+Evolutionary+Computation+%28IEEE+World+Congress+on+Computational+Intelligence%29&rft.atitle=New+evaluation+criteria+for+the+convergence+of+continuous+evolutionary+algorithms&rft.au=Ying+Lin&rft.au=Jian+Huang&rft.au=Jun+Zhang&rft.date=2008-06-01&rft.pub=IEEE&rft.isbn=9781424418220&rft.issn=1089-778X&rft.spage=2431&rft.epage=2438&rft_id=info:doi/10.1109%2FCEC.2008.4631123&rft.externalDocID=4631123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |