Realization of the First GaN Based Tunnel Field-Effect Transistor

Tunnel field-effect transistors (TFETs) offer the means to surpass the subthreshold swing (SS) limit of 60 mV/dec that limits MOSFETs. While MOSFETs rely on modulating a potential barrier, which is subject to a Boltzmann tail in the density of states (DOS), interband tunneling in TFETs enables a sha...

Full description

Saved in:
Bibliographic Details
Published in2018 76th Device Research Conference (DRC) pp. 1 - 3
Main Authors Chaney, Alexander, Turski, Henryk, Nomoto, Kazuki, Wang, Qingxiao, Hu, Zongyang, Kim, Moon, Xing, Huili Grace, Jena, Debdeep
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tunnel field-effect transistors (TFETs) offer the means to surpass the subthreshold swing (SS) limit of 60 mV/dec that limits MOSFETs. While MOSFETs rely on modulating a potential barrier, which is subject to a Boltzmann tail in the density of states (DOS), interband tunneling in TFETs enables a sharp turn off of the DOS because the transport is no longer governed by an exponential tail of carriers. These devices have been investigated in Si & III-V material systems 1 , achieving SS's as low as 20 mV/dec 2 . GaN is advantageous to these other material systems because its large bandgap is ideal for suppressing leakage current. Unfortunately impurity doping in GaN alone is not enough to achieve the internal fields required to promote interband tunneling[Fig l(a)]. However, by taking advantage of the difference in polarization fields between InGaN and GaN, a device structure favoring interband tunneling can be made [Fig l(b)]. Li et. al. 3 have theoretically predicted that a GaN heterojunction TFET could obtain an SS of 15 mV/dec and a peak current of 1\times 10^{-4}\ \mathrm{A}/\mu \mathrm{m} . For the work being presented, GaN TFETs were fabricated using a surrounding gate (SG) architecture utilizing both nanowires and fins formed from a top-down approach.
AbstractList Tunnel field-effect transistors (TFETs) offer the means to surpass the subthreshold swing (SS) limit of 60 mV/dec that limits MOSFETs. While MOSFETs rely on modulating a potential barrier, which is subject to a Boltzmann tail in the density of states (DOS), interband tunneling in TFETs enables a sharp turn off of the DOS because the transport is no longer governed by an exponential tail of carriers. These devices have been investigated in Si & III-V material systems 1 , achieving SS's as low as 20 mV/dec 2 . GaN is advantageous to these other material systems because its large bandgap is ideal for suppressing leakage current. Unfortunately impurity doping in GaN alone is not enough to achieve the internal fields required to promote interband tunneling[Fig l(a)]. However, by taking advantage of the difference in polarization fields between InGaN and GaN, a device structure favoring interband tunneling can be made [Fig l(b)]. Li et. al. 3 have theoretically predicted that a GaN heterojunction TFET could obtain an SS of 15 mV/dec and a peak current of 1\times 10^{-4}\ \mathrm{A}/\mu \mathrm{m} . For the work being presented, GaN TFETs were fabricated using a surrounding gate (SG) architecture utilizing both nanowires and fins formed from a top-down approach.
Author Hu, Zongyang
Xing, Huili Grace
Wang, Qingxiao
Jena, Debdeep
Kim, Moon
Turski, Henryk
Nomoto, Kazuki
Chaney, Alexander
Author_xml – sequence: 1
  givenname: Alexander
  surname: Chaney
  fullname: Chaney, Alexander
  organization: Cornell University, Ithaca, NY, 14850, USA
– sequence: 2
  givenname: Henryk
  surname: Turski
  fullname: Turski, Henryk
  organization: Cornell University, Ithaca, NY, 14850, USA
– sequence: 3
  givenname: Kazuki
  surname: Nomoto
  fullname: Nomoto, Kazuki
  organization: Cornell University, Ithaca, NY, 14850, USA
– sequence: 4
  givenname: Qingxiao
  surname: Wang
  fullname: Wang, Qingxiao
  organization: University of Texas Dallas, Richardson, TX, 75080
– sequence: 5
  givenname: Zongyang
  surname: Hu
  fullname: Hu, Zongyang
  organization: Cornell University, Ithaca, NY, 14850, USA
– sequence: 6
  givenname: Moon
  surname: Kim
  fullname: Kim, Moon
  organization: University of Texas Dallas, Richardson, TX, 75080
– sequence: 7
  givenname: Huili Grace
  surname: Xing
  fullname: Xing, Huili Grace
  organization: Cornell University, Ithaca, NY, 14850, USA
– sequence: 8
  givenname: Debdeep
  surname: Jena
  fullname: Jena, Debdeep
  organization: Cornell University, Ithaca, NY, 14850, USA
BookMark eNo1j81KAzEURiPqwtbuBTd5gRlz89Mky1rbKhSFMq7LnckNBsaMzMSFPr2CdfVxzuLAN2MXecjE2A2IGkD4u4fDupYCXO20llL7MzYDo9xSCengnC28df9s1RVbHQj79I0lDZkPkZc34ts0ToXv8Jnf40SBN585U_-rqQ_VJkbqCm9GzFOayjBes8uI_USL087Z63bTrB-r_cvuab3aVwmsKVWrULRSCBDByCC0AgWmC0H6ViIiBduargWpjTd2aVF7GclHrZGcDp7UnN3-dRMRHT_G9I7j1_H0Uv0AfohH8A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DRC.2018.8442249
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538630281
9781538630280
EndPage 3
ExternalDocumentID 8442249
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-b3a0b20010d52d0431315cdd29b2aaaed7b5cb124595767a492fe9f44ae84d9e3
IEDL.DBID RIE
ISBN 9781538630273
1538630273
IngestDate Wed Aug 27 02:58:56 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b3a0b20010d52d0431315cdd29b2aaaed7b5cb124595767a492fe9f44ae84d9e3
PageCount 3
ParticipantIDs ieee_primary_8442249
PublicationCentury 2000
PublicationDate 2018-June
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-June
PublicationDecade 2010
PublicationTitle 2018 76th Device Research Conference (DRC)
PublicationTitleAbbrev DRC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0691693
Snippet Tunnel field-effect transistors (TFETs) offer the means to surpass the subthreshold swing (SS) limit of 60 mV/dec that limits MOSFETs. While MOSFETs rely on...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Current measurement
Gallium nitride
Metals
Semiconductor device measurement
Temperature measurement
TFETs
Tunneling
Title Realization of the First GaN Based Tunnel Field-Effect Transistor
URI https://ieeexplore.ieee.org/document/8442249
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7Ndh_Zxxy1WovQIqWF3koes1CUVsruxV_vZHfbonjwluQQEobwTTLf94Wxu0xHeZpDICA1qXBaSaEIyUSWGEL7wCRQqdLGk2Q0l6-LeNFi93stDCJW5DP0XLOq5duNKd1TWT-TkhAH2qxNF7eDVovObOLKb1Fj4bTv78qSPvSfpgPH48q8Zo4fn6lUWDI8ZuPdKmoKybtXFtozX78MGv-7zBPWO6j2-Nsej05ZC9dd9jClTLDRWvJNzinf48MVpXz8RU34I2GY5bPSkV1oGD-sqO2MeYVhlYVIj82Hz7PBSDTfJogV5QKF0JHytaNK-TYOrTPPiYLYWBuCDpVSaFMdG024HgNdNlIlIcwRcikVZtICRmess96s8ZzxKA1sBhbRj1CCNZCgVkBhz0M6uDFcsK7b_vKzdsZYNju__Hv4ih25ENREq2vWKbYl3hCkF_q2iuU34widYQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cCI0yR2PjxCoRRoK1S1Elvlj4tUgVqEkoVfzzlJW4EY2GwPlq2T9c6-954JuUo1z5JMBkwmJmFOK8kUIhlLY4NoH5hYlqq04SjuT8XTa_TaINdrLQwAlOQz8FyzrOXbpSncU1knFQIRR26RbcT9KNiotfDUxq4Ax2sTp3V_VZj0Zedu3HVMrtSrZ_nxnUqJJr09MlytoyKRvHlFrj3z9cui8b8L3SftjW6PvqwR6YA0YNEiN2PMBWu1JV1mFDM-2ptj0kcf1IjeIopZOikc3QWH4d2yytCYlihWmoi0ybR3P-n2Wf1xAptjNpAzzZWvHVnKt1FonX0ODyJjbSh1qJQCm-jIaET2SOJ1I1FChhnITAgFqbAS-CFpLpYLOCKUJ4FNpQXwOQhpjYxBK4mBz0I8upE8Ji23_dlH5Y0xq3d-8vfwJdnpT4aD2eBx9HxKdl04KtrVGWnmnwWcI8Dn-qKM6zdOVaCq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+76th+Device+Research+Conference+%28DRC%29&rft.atitle=Realization+of+the+First+GaN+Based+Tunnel+Field-Effect+Transistor&rft.au=Chaney%2C+Alexander&rft.au=Turski%2C+Henryk&rft.au=Nomoto%2C+Kazuki&rft.au=Wang%2C+Qingxiao&rft.date=2018-06-01&rft.pub=IEEE&rft.isbn=9781538630273&rft.spage=1&rft.epage=3&rft_id=info:doi/10.1109%2FDRC.2018.8442249&rft.externalDocID=8442249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538630273/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538630273/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538630273/sc.gif&client=summon&freeimage=true