DynFluid: Predicting Time-Evolving Rating in Recommendation Systems via Fluid Dynamics

In trust-based recommendation systems, if a user is predicted to have a high rating of a product, then this product is recommended to that user for shopping potential. Therefore, rating predictions are critical for qualified recommendations. In this paper, based on the fluid dynamics theory, we prop...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE Trustcom/BigDataSE/ISPA Vol. 1; pp. 1 - 8
Main Authors Huanyang Zheng, Jie Wu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2015
Subjects
Online AccessGet full text
DOI10.1109/Trustcom.2015.350

Cover

Loading…
Abstract In trust-based recommendation systems, if a user is predicted to have a high rating of a product, then this product is recommended to that user for shopping potential. Therefore, rating predictions are critical for qualified recommendations. In this paper, based on the fluid dynamics theory, we propose a novel rating prediction scheme called DynFluid. The key observation is that the rating of a user depends on his/her user experience, as well as the ratings of other users. For example, users may refer to friends' ratings upon rating a product, themselves. DynFluid analogizes the rating reference among the users to the fluid flow among containers: each user is represented by a container, the rating of a user is mapped to be the fluid temperature in the corresponding container. Two user characteristics, persistency and persuasiveness, are also incorporated into DynFluid. Finally, real data-driven experiments in Epinions and Ciao validate the efficiency and effectiveness of the proposed DynFluid.
AbstractList In trust-based recommendation systems, if a user is predicted to have a high rating of a product, then this product is recommended to that user for shopping potential. Therefore, rating predictions are critical for qualified recommendations. In this paper, based on the fluid dynamics theory, we propose a novel rating prediction scheme called DynFluid. The key observation is that the rating of a user depends on his/her user experience, as well as the ratings of other users. For example, users may refer to friends' ratings upon rating a product, themselves. DynFluid analogizes the rating reference among the users to the fluid flow among containers: each user is represented by a container, the rating of a user is mapped to be the fluid temperature in the corresponding container. Two user characteristics, persistency and persuasiveness, are also incorporated into DynFluid. Finally, real data-driven experiments in Epinions and Ciao validate the efficiency and effectiveness of the proposed DynFluid.
Author Jie Wu
Huanyang Zheng
Author_xml – sequence: 1
  surname: Huanyang Zheng
  fullname: Huanyang Zheng
  email: huanyang.zheng@temple.edu
  organization: Dept. of Comput. & Inf. Sci., Temple Univ., Philadelphia, PA, USA
– sequence: 2
  surname: Jie Wu
  fullname: Jie Wu
  email: jiewu@temple.edu
  organization: Dept. of Comput. & Inf. Sci., Temple Univ., Philadelphia, PA, USA
BookMark eNotzNtKwzAAxvEICursA4g3eYHWHJqTdzI3FQbKrN6ONAcJNKk0XWFvvzq9-vj-F79rcJ765AC4xajCGKn7Ztjn0fSxIgizijJ0BgolJK65oEIxwi9BkXNoEUdKKoTVFfh6OqR1tw_2Ab4PzgYzhvQNmxBduZr6bvp9W32KIcGtm_Xokp1Ln-DHIY8uZjgFDU8InDUdg8k34MLrLrvifxfgc71qli_l5u35dfm4KQMWbCxbZLAmVrVSeaFbbm2LiMbScC-t97VWnkpOlOGGzKVW3mPiCKGW1UYrRBfg7s8NzrndzxCiHg47QWtGmKRH_ddUjg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/Trustcom.2015.350
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467379526
1467379522
EndPage 8
ExternalDocumentID 7345258
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIE
RIL
ID FETCH-LOGICAL-i175t-b0c1a2d9b89f7ab6ddb02a18c6f8dff4a9f38629c6c2f8d49ff12e223d54ca903
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:18 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b0c1a2d9b89f7ab6ddb02a18c6f8dff4a9f38629c6c2f8d49ff12e223d54ca903
PageCount 8
ParticipantIDs ieee_primary_7345258
PublicationCentury 2000
PublicationDate 2015-Aug.
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-Aug.
PublicationDecade 2010
PublicationTitle 2015 IEEE Trustcom/BigDataSE/ISPA
PublicationTitleAbbrev TrustCom
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060989019
ssib048751292
Score 1.7100747
Snippet In trust-based recommendation systems, if a user is predicted to have a high rating of a product, then this product is recommended to that user for shopping...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computers
Containers
Fluid dynamics
Online social networks
rating prediction
recommendation systems
Social network services
Temperature measurement
trust propagation
Valves
Title DynFluid: Predicting Time-Evolving Rating in Recommendation Systems via Fluid Dynamics
URI https://ieeexplore.ieee.org/document/7345258
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjyptOKbPXh00zx2s1mvtqUIFZFWeiv7hKCmoomgv97ZJK0iHryFCQybnSXfzM58MwhdcCtjGQlFqIksoYlJiRQZI84Jzox2gGA-UJzdptMFvVmyZQddbrkw1tq6-MwG_rHO5Zu1rvxV2ZAnPguXdVEXAreGq7U5O97vBujaQnUaigygTrSJzCgUw7knMfgSEcA8FiSeaf9joEqNJ5NdNNuspCkjeQyqUgX681eTxv8udQ8Nvpl7-G6LSfuoY4s-ehh9FJOnKjdX8M4nZnypM_bkDzKGv5O_UsD3shbmBfYB6TNob4Yt4balOX7PJa6V4FEzxP5tgBaT8fx6Stp5CiQHJ6EkKtSRjI1QmXBcqtQYFYKhMp26zDhHpXAJBDhCpzoGCRXORbEF_8EwqqUIkwPUK9aFPUQ4poYzlTItIELkoE3A59LQsphLaiN6hPp-T1YvTcuMVbsdx3-LT9COt0lTV3eKeuVrZc8A60t1Xhv5C_OMqqQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GOMAJ0IZ4kwNH0vWRtA1XtmnANiG0IW5TntIEdAhaJPj1OG03EOLArXIlK42jfnbsz0boLDEiFAGXhOrAEBrpmAieMmItT5hWFhDMBYqjcTyY0usH9tBA5ysujDGmLD4znnssc_l6oQp3VdZJIpeFS9fQOuA-Cyq21vL0OM8bwGsF1rHPUwA7XqcyA593Jo7G4IpEAPWYFzmu_Y-RKiWi9LfQaLmWqpDk0Sty6anPX20a_7vYbdT-5u7h2xUq7aCGyVrovvuR9Z-Kub6Ady4144qdsaN_kB78n9ylAr4TpXCeYReSPoP2atwSrpua4_e5wKUS3K3G2L-10bTfm1wOSD1RgczBTciJ9FUgQs1lym0iZKy19MFUqYptqq2lgtsIQhyuYhWChHJrg9CAB6EZVYL70S5qZovM7CEcUp0wGTPFIUZMQBuHz6W-YWEiqAnoPmq5PZm9VE0zZvV2HPwtPkUbg8loOBtejW8O0aazT1Vld4Sa-WthjgH5c3lSGvwLCYOt7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+Trustcom%2FBigDataSE%2FISPA&rft.atitle=DynFluid%3A+Predicting+Time-Evolving+Rating+in+Recommendation+Systems+via+Fluid+Dynamics&rft.au=Huanyang+Zheng&rft.au=Jie+Wu&rft.date=2015-08-01&rft.pub=IEEE&rft.volume=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTrustcom.2015.350&rft.externalDocID=7345258