Learning Transformations for Automated Classification of Manifestation of Tuberculosis using Convolutional Neural Network

automated classification of tuberculosis in x-ray images is of an increasing interest to all researchers and physicians. Due to the high level of intensity inhomogeneity and variations, statistical machine-learning approaches usually fail to offer a generic solution to image classification. Convolut...

Full description

Saved in:
Bibliographic Details
Published in2018 13th International Conference on Computer Engineering and Systems (ICCES) pp. 122 - 126
Main Authors Abbas, Asmaa, Abdelsamea, Mohammed M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2018
Subjects
Online AccessGet full text
DOI10.1109/ICCES.2018.8639200

Cover

Loading…
Abstract automated classification of tuberculosis in x-ray images is of an increasing interest to all researchers and physicians. Due to the high level of intensity inhomogeneity and variations, statistical machine-learning approaches usually fail to offer a generic solution to image classification. Convolution neural networks (CNNs) have demonstrated superior effectiveness in computer-aided diagnosis systems. Transfer learning can provide a powerful deep learning solutions to the limited availability of labelled images. In this paper we study the effect of knowledge transferred from a pre-trained ImageNet, in different ways via a pre-trained CNN model, to classify chest x-ray images as having manifestations of tuberculosis or as healthy. We evaluated and compared various models using the learning curve between training and validation set, and receiver operating characteristic (ROC) curve. Our experiments revealed that using fine-tuning technique outperformed both shallow-tuning and deep-tuning techniques and achieved 0.998 for the AUC, 0.999 for specificity, and 0.997 for sensitivity rate.
AbstractList automated classification of tuberculosis in x-ray images is of an increasing interest to all researchers and physicians. Due to the high level of intensity inhomogeneity and variations, statistical machine-learning approaches usually fail to offer a generic solution to image classification. Convolution neural networks (CNNs) have demonstrated superior effectiveness in computer-aided diagnosis systems. Transfer learning can provide a powerful deep learning solutions to the limited availability of labelled images. In this paper we study the effect of knowledge transferred from a pre-trained ImageNet, in different ways via a pre-trained CNN model, to classify chest x-ray images as having manifestations of tuberculosis or as healthy. We evaluated and compared various models using the learning curve between training and validation set, and receiver operating characteristic (ROC) curve. Our experiments revealed that using fine-tuning technique outperformed both shallow-tuning and deep-tuning techniques and achieved 0.998 for the AUC, 0.999 for specificity, and 0.997 for sensitivity rate.
Author Abdelsamea, Mohammed M.
Abbas, Asmaa
Author_xml – sequence: 1
  givenname: Asmaa
  surname: Abbas
  fullname: Abbas, Asmaa
  organization: Mathematics Department, University of Assiut, Assiut, Egypt
– sequence: 2
  givenname: Mohammed M.
  surname: Abdelsamea
  fullname: Abdelsamea, Mohammed M.
  organization: Mathematics Department, University of Assiut, Assiut, Egypt
BookMark eNo9UMtOAjEUrYkmKvIDuukPgPdObTtdkgkqCerCcU06zK2pDq1pZzT8vYDE1XnmLM4lOw0xEGPXCFNEMLeLqpq_TgvAcloqYQqAEzY2ukQpSiURUZ-zcc4fAFCoUkghL9h2STYFH955nWzILqaN7X0Mme8onw193GlqedXZnL3z60PKo-NPNnhHuf836qGhtB66mH3mQ95vVjF8x27YN2zHn2lIB-h_Yvq8YmfOdpnGRxyxt_t5XT1Oli8Pi2q2nHjUsp80UDZAppAW0axtC9ooA6KxVAgtlSKUUloAFFJpQHDKgW6pbBuj5Z1pxYjd_O16Ilp9Jb-xabs6HiR-AWF9X-s
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCES.2018.8639200
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538651117
1538651114
EndPage 126
ExternalDocumentID 8639200
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-b08b0e925a119cad0796903bae237566e1555a0013567010f6f07de8db97549d3
IEDL.DBID RIE
IngestDate Wed Aug 27 03:01:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b08b0e925a119cad0796903bae237566e1555a0013567010f6f07de8db97549d3
PageCount 5
ParticipantIDs ieee_primary_8639200
PublicationCentury 2000
PublicationDate 2018-Dec.
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec.
PublicationDecade 2010
PublicationTitle 2018 13th International Conference on Computer Engineering and Systems (ICCES)
PublicationTitleAbbrev ICCES
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683535
Score 1.8278681
Snippet automated classification of tuberculosis in x-ray images is of an increasing interest to all researchers and physicians. Due to the high level of intensity...
SourceID ieee
SourceType Publisher
StartPage 122
SubjectTerms Computed tomography
computer-aided diagnosis
Convolution
convolution neural network
deep learning
Feature extraction
Lung
medical imaging
Sensitivity
Task analysis
Training
transfer learning
Title Learning Transformations for Automated Classification of Manifestation of Tuberculosis using Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/8639200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3rx0Ypv9uDRpEmTTbJHKS1VqAi20FvZV0qxNNImgv56ZzdprOLBUza7hCy7A_PNzjffAtzK0OTrpO8wSqUTUsYczn3pKMWZSdvR0DeFwqOnaDgJH6d02oC7uhZGa23JZ9o1TZvLV5kszFFZJ0F3iru6B3sYuJW1WvV5SjdCLBHQbV2MxzoPvV7_xZC3Erf68McNKtaBDA5htP11yRt5dYtcuPLzlyrjf-d2BO3vUj3yXDuhY2jo1Qkc7KgMtuCj0lCdk_EOSkVrI9gk90We4btWxN6PaZhDdpRkKRlxw3zZ5HXHuBB6LYtltllsiKHMzwnO470yX74kRuvDPiy5vA2TQX_cGzrVjQvOAmFE7ggvEZ5mXcp9n0muvJhh9BwIrrtBjMBPI_qg3MBGGsUYyaVR6sVKJ0qwGANNFZxCc5Wt9BkQHObMD2ngCaOppZNAUI1gJApSqRCFnUPLLOLsrRTVmFXrd_F39yXsm40seSRX0MzXhb5GNJCLG2sGXweJtis
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD-rFDzB-24NHNza2buvREAgoIyaOhBvp1wiRMAObif71vm5jovHgaV2bZU3fS96vfb_3K0J3wtX5OmEblBBhuIRSgzFbGFIyqtN2xLV1oXA48vpj93FCJjV0X9XCKKVy8pkydTPP5ctEZPqorBVAOAWr7qBdiPsuLaq1qhOVtgdowiGbyhiLtgadTvdF07cCs_z0xx0qeQjpHaJw8_OCOfJqZik3xecvXcb_zu4INb-L9fBzFYaOUU0tT9DBls5gA32UKqozHG3hVPA3DE38kKUJvCuJ8xsyNXcoH8VJjEOmuS_rtOqIMq5WIlsk6_kaa9L8DMM83ksHZgus1T7yR04vb6Jxrxt1-kZ554IxByCRGtwKuKVomzDbpoJJy6ewf3Y4U23HB-inAH8QpoEj8XzYy8VebPlSBZJTH0winVNUXyZLdYYwDDNqu8SxuFbVUoHDiQI44jmxkIDDzlFDL-L0rZDVmJbrd_F39y3a60fhcDocjJ4u0b42asEquUL1dJWpa8AGKb_JXeILwdi5ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+13th+International+Conference+on+Computer+Engineering+and+Systems+%28ICCES%29&rft.atitle=Learning+Transformations+for+Automated+Classification+of+Manifestation+of+Tuberculosis+using+Convolutional+Neural+Network&rft.au=Abbas%2C+Asmaa&rft.au=Abdelsamea%2C+Mohammed+M.&rft.date=2018-12-01&rft.pub=IEEE&rft.spage=122&rft.epage=126&rft_id=info:doi/10.1109%2FICCES.2018.8639200&rft.externalDocID=8639200