S2F: Slow-to-Fast Interpolator Flow

We introduce a method to compute optical flow at multiple scales of motion, without resorting to multi-resolution or combinatorial methods. It addresses the key problem of small objects moving fast, and resolves the artificial binding between how large an object is and how fast it can move before be...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3767 - 3776
Main Authors Yanchao Yang, Soatto, Stefano
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce a method to compute optical flow at multiple scales of motion, without resorting to multi-resolution or combinatorial methods. It addresses the key problem of small objects moving fast, and resolves the artificial binding between how large an object is and how fast it can move before being diffused away by classical scale-space. Even with no learning, it achieves top performance on the most challenging optical flow benchmark. Moreover, the results are interpretable, and indeed we list the assumptions underlying our method explicitly. The key to our approach is the matching progression from slow to fast, as well as the choice of in-terpolation method, or equivalently the prior, to fill in regions where the data allows it. We use several off-the-shelf components, with relatively low sensitivity to parameter tuning. Computational cost is comparable to the state-of-the-art.
AbstractList We introduce a method to compute optical flow at multiple scales of motion, without resorting to multi-resolution or combinatorial methods. It addresses the key problem of small objects moving fast, and resolves the artificial binding between how large an object is and how fast it can move before being diffused away by classical scale-space. Even with no learning, it achieves top performance on the most challenging optical flow benchmark. Moreover, the results are interpretable, and indeed we list the assumptions underlying our method explicitly. The key to our approach is the matching progression from slow to fast, as well as the choice of in-terpolation method, or equivalently the prior, to fill in regions where the data allows it. We use several off-the-shelf components, with relatively low sensitivity to parameter tuning. Computational cost is comparable to the state-of-the-art.
Author Soatto, Stefano
Yanchao Yang
Author_xml – sequence: 1
  surname: Yanchao Yang
  fullname: Yanchao Yang
  email: yanchao.yang@cs.ucla.edu
  organization: UCLA Vision Lab., Univ. of California, Los Angeles, Los Angeles, CA, USA
– sequence: 2
  givenname: Stefano
  surname: Soatto
  fullname: Soatto, Stefano
  email: soatto@cs.ucla.edu
  organization: UCLA Vision Lab., Univ. of California, Los Angeles, Los Angeles, CA, USA
BookMark eNpNjM9LwzAYhqNMcJ0ePXkpeE73JWl-eZOyusFAcep1JO0XqNRmtAHxv7egB0_vy_PyvBlZDHFAQm4YFIyBXVfvzy8FB6aLEtgZyZgURkEpdXlOlgyUoMoyu_jXL0k2TR8AXGgOS3J34PV9fujjF02R1m5K-W5IOJ5i71Ic83pershFcP2E13-5Im_15rXa0v3T46562NOOaZmoB3BcBdE03qD2stVCtSH4gFKKGQcEAa3gyroS0ch2FoLRHlFa2ygvVuT297dDxONp7D7d-H00YK0xpfgBhTNBUw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2017.401
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1538604574
9781538604571
EISSN 1063-6919
EndPage 3776
ExternalDocumentID 8099884
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-b00a26f3ccb8e7b5d736dffbfe553f3cfe030d3269a4ee85db00f87bee599c6b3
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Wed Aug 27 02:33:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-b00a26f3ccb8e7b5d736dffbfe553f3cfe030d3269a4ee85db00f87bee599c6b3
PageCount 10
ParticipantIDs ieee_primary_8099884
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
Score 2.1490765
Snippet We introduce a method to compute optical flow at multiple scales of motion, without resorting to multi-resolution or combinatorial methods. It addresses the...
SourceID ieee
SourceType Publisher
StartPage 3767
SubjectTerms Benchmark testing
Interpolation
Optical computing
Optical imaging
Optical sensors
Spatial resolution
Title S2F: Slow-to-Fast Interpolator Flow
URI https://ieeexplore.ieee.org/document/8099884
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED62Pfk0dRN_U9BH07mmSVNfh0WEyXBO9jaa5gKirOI6BP96L23XifjgW7lSCDnSuy_33X0Al5YblJRGM2GlZqEw9B80KTLlmIzGxNHQOqA4fpB3s_B-LuYtuGp6YRCxJJ-h7x7LWr7Js7W7KhsoSmeUCtvQJuBW9Wo19ymckIyMmwpC4NRXykqn5EzGw3g7X3Mwep48OlJX5IdOC-aHqkoZVJIujDfLqbgkr_660H729WtS43_Xuwv9bfueN2kC0x60cLkP3Trf9OrTvCLTRtJhY-vBxTRIbrzpW_7Jipwl6arwKloiIWBC515Cb_owS26fRnes1lFgL5QcFE5jJw2k5VmmFUaa_MGlsVZbFIKT2SKddEN5XJyGiEoY-sCqSCOKOM6k5gfQWeZLPASPI5dDXcIoN2hOaBsYLtNUZddI2MgcQc9tw-K9GpWxqHfg-G_zCew4N1Ts11PoFB9rPKMYX-jz0rnfaG-ivw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8NAEB6qHvTkoxXfBtRjqs1mt4ngqRqqfVBsK95qNjsLojRiU0R_i3_F_-ZskrYiXgvewoSEZHbYmW_nmxmAY80UCgqjba6FtF2uaB9UIdqeYTIq5Vcr2gDFVlvU--7NPb8vwOe0FgYRU_IZls1lmstXcTQ2R2WnHoUznufmFMoGvr8RQBtdXF_Sap44TnDVq9XtfIaA_UiOMTHzZUJHaBZF0sOqpG9hQmktNXLOSKyRrFxRDOOHLqLHFT2gvapE5L4fCcnovQuwRHEGd7LqsOkJDiPsJPxpzsIx817S3KpgtvAr_qyj52ntrnNraGTVsmumz_yY45K6sWAVviYKyNgrT-VxIsvRx6_ekP9VQ2tQmhUoWp2p612HAg43YDWPqK18vxqRaDK0YiIrwlHXCc6t7nP8ZiexHYSjxMqIl4Txk_jVCuhOCfpz-YdNWBzGQ9wCiyETFZkCRdNKj0vtKCbC0IvOkNCf2oaiUfvgJWsGMsg1vvO3-BCW671Wc9C8bjd2YcWYQMb13YPF5HWM-xTRJPIgNSwLHua9Tt8cTAQT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=S2F%3A+Slow-to-Fast+Interpolator+Flow&rft.au=Yanchao+Yang&rft.au=Soatto%2C+Stefano&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=3767&rft.epage=3776&rft_id=info:doi/10.1109%2FCVPR.2017.401&rft.externalDocID=8099884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon