S2F: Slow-to-Fast Interpolator Flow
We introduce a method to compute optical flow at multiple scales of motion, without resorting to multi-resolution or combinatorial methods. It addresses the key problem of small objects moving fast, and resolves the artificial binding between how large an object is and how fast it can move before be...
Saved in:
Published in | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3767 - 3776 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We introduce a method to compute optical flow at multiple scales of motion, without resorting to multi-resolution or combinatorial methods. It addresses the key problem of small objects moving fast, and resolves the artificial binding between how large an object is and how fast it can move before being diffused away by classical scale-space. Even with no learning, it achieves top performance on the most challenging optical flow benchmark. Moreover, the results are interpretable, and indeed we list the assumptions underlying our method explicitly. The key to our approach is the matching progression from slow to fast, as well as the choice of in-terpolation method, or equivalently the prior, to fill in regions where the data allows it. We use several off-the-shelf components, with relatively low sensitivity to parameter tuning. Computational cost is comparable to the state-of-the-art. |
---|---|
AbstractList | We introduce a method to compute optical flow at multiple scales of motion, without resorting to multi-resolution or combinatorial methods. It addresses the key problem of small objects moving fast, and resolves the artificial binding between how large an object is and how fast it can move before being diffused away by classical scale-space. Even with no learning, it achieves top performance on the most challenging optical flow benchmark. Moreover, the results are interpretable, and indeed we list the assumptions underlying our method explicitly. The key to our approach is the matching progression from slow to fast, as well as the choice of in-terpolation method, or equivalently the prior, to fill in regions where the data allows it. We use several off-the-shelf components, with relatively low sensitivity to parameter tuning. Computational cost is comparable to the state-of-the-art. |
Author | Soatto, Stefano Yanchao Yang |
Author_xml | – sequence: 1 surname: Yanchao Yang fullname: Yanchao Yang email: yanchao.yang@cs.ucla.edu organization: UCLA Vision Lab., Univ. of California, Los Angeles, Los Angeles, CA, USA – sequence: 2 givenname: Stefano surname: Soatto fullname: Soatto, Stefano email: soatto@cs.ucla.edu organization: UCLA Vision Lab., Univ. of California, Los Angeles, Los Angeles, CA, USA |
BookMark | eNpNjM9LwzAYhqNMcJ0ePXkpeE73JWl-eZOyusFAcep1JO0XqNRmtAHxv7egB0_vy_PyvBlZDHFAQm4YFIyBXVfvzy8FB6aLEtgZyZgURkEpdXlOlgyUoMoyu_jXL0k2TR8AXGgOS3J34PV9fujjF02R1m5K-W5IOJ5i71Ic83pershFcP2E13-5Im_15rXa0v3T46562NOOaZmoB3BcBdE03qD2stVCtSH4gFKKGQcEAa3gyroS0ch2FoLRHlFa2ygvVuT297dDxONp7D7d-H00YK0xpfgBhTNBUw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2017.401 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1538604574 9781538604571 |
EISSN | 1063-6919 |
EndPage | 3776 |
ExternalDocumentID | 8099884 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-b00a26f3ccb8e7b5d736dffbfe553f3cfe030d3269a4ee85db00f87bee599c6b3 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:33:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-b00a26f3ccb8e7b5d736dffbfe553f3cfe030d3269a4ee85db00f87bee599c6b3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8099884 |
PublicationCentury | 2000 |
PublicationDate | 2017-July |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0003211698 |
Score | 2.1490765 |
Snippet | We introduce a method to compute optical flow at multiple scales of motion, without resorting to multi-resolution or combinatorial methods. It addresses the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3767 |
SubjectTerms | Benchmark testing Interpolation Optical computing Optical imaging Optical sensors Spatial resolution |
Title | S2F: Slow-to-Fast Interpolator Flow |
URI | https://ieeexplore.ieee.org/document/8099884 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED62Pfk0dRN_U9BH07mmSVNfh0WEyXBO9jaa5gKirOI6BP96L23XifjgW7lSCDnSuy_33X0Al5YblJRGM2GlZqEw9B80KTLlmIzGxNHQOqA4fpB3s_B-LuYtuGp6YRCxJJ-h7x7LWr7Js7W7KhsoSmeUCtvQJuBW9Wo19ymckIyMmwpC4NRXykqn5EzGw3g7X3Mwep48OlJX5IdOC-aHqkoZVJIujDfLqbgkr_660H729WtS43_Xuwv9bfueN2kC0x60cLkP3Trf9OrTvCLTRtJhY-vBxTRIbrzpW_7Jipwl6arwKloiIWBC515Cb_owS26fRnes1lFgL5QcFE5jJw2k5VmmFUaa_MGlsVZbFIKT2SKddEN5XJyGiEoY-sCqSCOKOM6k5gfQWeZLPASPI5dDXcIoN2hOaBsYLtNUZddI2MgcQc9tw-K9GpWxqHfg-G_zCew4N1Ts11PoFB9rPKMYX-jz0rnfaG-ivw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8NAEB6qHvTkoxXfBtRjqs1mt4ngqRqqfVBsK95qNjsLojRiU0R_i3_F_-ZskrYiXgvewoSEZHbYmW_nmxmAY80UCgqjba6FtF2uaB9UIdqeYTIq5Vcr2gDFVlvU--7NPb8vwOe0FgYRU_IZls1lmstXcTQ2R2WnHoUznufmFMoGvr8RQBtdXF_Sap44TnDVq9XtfIaA_UiOMTHzZUJHaBZF0sOqpG9hQmktNXLOSKyRrFxRDOOHLqLHFT2gvapE5L4fCcnovQuwRHEGd7LqsOkJDiPsJPxpzsIx817S3KpgtvAr_qyj52ntrnNraGTVsmumz_yY45K6sWAVviYKyNgrT-VxIsvRx6_ekP9VQ2tQmhUoWp2p612HAg43YDWPqK18vxqRaDK0YiIrwlHXCc6t7nP8ZiexHYSjxMqIl4Txk_jVCuhOCfpz-YdNWBzGQ9wCiyETFZkCRdNKj0vtKCbC0IvOkNCf2oaiUfvgJWsGMsg1vvO3-BCW671Wc9C8bjd2YcWYQMb13YPF5HWM-xTRJPIgNSwLHua9Tt8cTAQT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=S2F%3A+Slow-to-Fast+Interpolator+Flow&rft.au=Yanchao+Yang&rft.au=Soatto%2C+Stefano&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=3767&rft.epage=3776&rft_id=info:doi/10.1109%2FCVPR.2017.401&rft.externalDocID=8099884 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |