Recognition using regions
This paper presents a unified framework for object detection, segmentation, and classification using regions. Region features are appealing in this context because: (1) they encode shape and scale information of objects naturally; (2) they are only mildly affected by background clutter. Regions have...
Saved in:
Published in | 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 1030 - 1037 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a unified framework for object detection, segmentation, and classification using regions. Region features are appealing in this context because: (1) they encode shape and scale information of objects naturally; (2) they are only mildly affected by background clutter. Regions have not been popular as features due to their sensitivity to segmentation errors. In this paper, we start by producing a robust bag of overlaid regions for each image using Arbeldez et al., CVPR 2009. Each region is represented by a rich set of image cues (shape, color and texture). We then learn region weights using a max-margin framework. In detection and segmentation, we apply a generalized Hough voting scheme to generate hypotheses of object locations, scales and support, followed by a verification classifier and a constrained segmenter on each hypothesis. The proposed approach significantly outperforms the state of the art on the ETHZ shape database(87.1% average detection rate compared to Ferrari et al. 's 67.2%), and achieves competitive performance on the Caltech 101 database. |
---|---|
AbstractList | This paper presents a unified framework for object detection, segmentation, and classification using regions. Region features are appealing in this context because: (1) they encode shape and scale information of objects naturally; (2) they are only mildly affected by background clutter. Regions have not been popular as features due to their sensitivity to segmentation errors. In this paper, we start by producing a robust bag of overlaid regions for each image using Arbeldez et al., CVPR 2009. Each region is represented by a rich set of image cues (shape, color and texture). We then learn region weights using a max-margin framework. In detection and segmentation, we apply a generalized Hough voting scheme to generate hypotheses of object locations, scales and support, followed by a verification classifier and a constrained segmenter on each hypothesis. The proposed approach significantly outperforms the state of the art on the ETHZ shape database(87.1% average detection rate compared to Ferrari et al. 's 67.2%), and achieves competitive performance on the Caltech 101 database. |
Author | Malik, Jitendra Arbelaez, Pablo Chunhui Gu Lim, Joseph J |
Author_xml | – sequence: 1 surname: Chunhui Gu fullname: Chunhui Gu email: chunhui@eecs.berkeley.edu organization: Univ. of California at Berkeley, Berkeley, CA, USA – sequence: 2 givenname: Joseph J surname: Lim fullname: Lim, Joseph J email: lim@eecs.berkeley.edu organization: Univ. of California at Berkeley, Berkeley, CA, USA – sequence: 3 givenname: Pablo surname: Arbelaez fullname: Arbelaez, Pablo email: arbelaez@eecs.berkeley.edu organization: Univ. of California at Berkeley, Berkeley, CA, USA – sequence: 4 givenname: Jitendra surname: Malik fullname: Malik, Jitendra email: malik@eecs.berkeley.edu organization: Univ. of California at Berkeley, Berkeley, CA, USA |
BookMark | eNpNz0FLw0AQBeBVK9jU_oDipX8gcWZ2s9s5SrAqFJSiXstmMxtWNJGkHvz3Fqzg6fH44MHL1KTrO1FqgVAgAl9Xr0_bggC4KAmsI3ei5uxWaMgYzYx4qqYIVueWkc9U9gdEk39wobJxfAMg7QimarGV0Ldd2qe-W36NqWuXg7SHMl6q8-jfR5kfc6Ze1rfP1X2-ebx7qG42eUJX7nMfa3KGwEcODYMHCBptFGFpGGtoPAXNoXRNNFaLqWXFJbuDONA2kp6pq9_dJCK7zyF9-OF7d7yofwCp3EFD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2009.5206727 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781424439911 1424439914 |
EISSN | 1063-6919 |
EndPage | 1037 |
ExternalDocumentID | 5206727 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-afb27420af9cd90a00c316fee9ed91b0da2c39c57df463e4be895971b07036f23 |
IEDL.DBID | RIE |
ISBN | 1424439922 9781424439928 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:43:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-afb27420af9cd90a00c316fee9ed91b0da2c39c57df463e4be895971b07036f23 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5206727 |
PublicationCentury | 2000 |
PublicationDate | 2009-June |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-June |
PublicationDecade | 2000 |
PublicationTitle | 2009 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0000453166 ssj0003211698 |
Score | 2.2750363 |
Snippet | This paper presents a unified framework for object detection, segmentation, and classification using regions. Region features are appealing in this context... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1030 |
SubjectTerms | Computer vision Face detection Horses Image databases Image segmentation Layout Object detection Robustness Shape Voting |
Title | Recognition using regions |
URI | https://ieeexplore.ieee.org/document/5206727 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTkwFWkT5UgZG3CZx4tpzRVUhFVUVRd0q2zkjhJQiSBd-PbbjBIEY2GJnSM5xdM_37t4B3DgNb7TQmHAziUnGVUpEQRPCuFKSWx-nfW7O4oHN19n9Jt904LathUFEn3yGI3fpufxip_cuVDbOU08cHsCBPbjVtVptPMVCE5oEaOLG1J5smGgZhdR1Y_HMJ6OEiUQ0RV5emLXRfgpjHujPJBbj6dNyVctahqf_aMPivdCsB4vm_evkk9fRvlIj_flL2vG_Bh7B4LveL1q2nuwYOlieQC8A1Cj8_h92qukB0cz1YbhqMpB2ZeSS6J8j1-vB7uUBrGd3j9M5Ce0WyIvFEBWRRjneNpZG6ELEMo61XVGDKLAQiYoLmWoqdD4pTMYoZgq5sMcRe8eJeJmUnkK33JV4BpGFAchYpvOci0y6vqJmkqOxn0RKxagZQt8Zv32rFTW2we7zv6cv4LDmcFzs4xK61fserywUqNS13wNf8IOnXg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEWUzwyMuE3ixLXnClSgraqqRd0q27ERQkoRpAu_HttxgkAMbPFliC6xcs_37t4BXFsNb2WgMaJ6EKKEihixDEeIUCE4NTFOutqcyZSMlsnDKl014KbuhVFKueIz1bOXjsvPNnJrU2X9NHbE4Q7smrifRmW3Vp1RMeAERx6c2DU2ZxvCak4htvNYHPdJMCIsYlWbl5NmrdSf_Jp6AjQKWX_4NJuXwpb--T8Gsbg4dNeCSeVBWX7y2tsWoic_f4k7_tfFA-h8d_wFszqWHUJD5UfQ8hA18D-AD2OqpkBUtjZ051UN0iYPbBn9c2CnPZjd3IHl3e1iOEJ-4AJ6MSiiQFwLy9yGXDOZsZCHoTRvVCvFVMYiEWY8lpjJdJDphGCVCEWZOZCYO1bGS8f4GJr5JlcnEBggoAhJZJpSlnA7WVQPUqXNJ-FcEKy70LbOr99KTY219_v0b_MV7I0Wk_F6fD99PIP9ktGxmZBzaBbvW3VhgEEhLt1--ALorqqn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Recognition+using+regions&rft.au=Chunhui+Gu&rft.au=Lim%2C+Joseph+J&rft.au=Arbelaez%2C+Pablo&rft.au=Malik%2C+Jitendra&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1030&rft.epage=1037&rft_id=info:doi/10.1109%2FCVPR.2009.5206727&rft.externalDocID=5206727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |