Recognition using regions

This paper presents a unified framework for object detection, segmentation, and classification using regions. Region features are appealing in this context because: (1) they encode shape and scale information of objects naturally; (2) they are only mildly affected by background clutter. Regions have...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 1030 - 1037
Main Authors Chunhui Gu, Lim, Joseph J, Arbelaez, Pablo, Malik, Jitendra
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a unified framework for object detection, segmentation, and classification using regions. Region features are appealing in this context because: (1) they encode shape and scale information of objects naturally; (2) they are only mildly affected by background clutter. Regions have not been popular as features due to their sensitivity to segmentation errors. In this paper, we start by producing a robust bag of overlaid regions for each image using Arbeldez et al., CVPR 2009. Each region is represented by a rich set of image cues (shape, color and texture). We then learn region weights using a max-margin framework. In detection and segmentation, we apply a generalized Hough voting scheme to generate hypotheses of object locations, scales and support, followed by a verification classifier and a constrained segmenter on each hypothesis. The proposed approach significantly outperforms the state of the art on the ETHZ shape database(87.1% average detection rate compared to Ferrari et al. 's 67.2%), and achieves competitive performance on the Caltech 101 database.
AbstractList This paper presents a unified framework for object detection, segmentation, and classification using regions. Region features are appealing in this context because: (1) they encode shape and scale information of objects naturally; (2) they are only mildly affected by background clutter. Regions have not been popular as features due to their sensitivity to segmentation errors. In this paper, we start by producing a robust bag of overlaid regions for each image using Arbeldez et al., CVPR 2009. Each region is represented by a rich set of image cues (shape, color and texture). We then learn region weights using a max-margin framework. In detection and segmentation, we apply a generalized Hough voting scheme to generate hypotheses of object locations, scales and support, followed by a verification classifier and a constrained segmenter on each hypothesis. The proposed approach significantly outperforms the state of the art on the ETHZ shape database(87.1% average detection rate compared to Ferrari et al. 's 67.2%), and achieves competitive performance on the Caltech 101 database.
Author Malik, Jitendra
Arbelaez, Pablo
Chunhui Gu
Lim, Joseph J
Author_xml – sequence: 1
  surname: Chunhui Gu
  fullname: Chunhui Gu
  email: chunhui@eecs.berkeley.edu
  organization: Univ. of California at Berkeley, Berkeley, CA, USA
– sequence: 2
  givenname: Joseph J
  surname: Lim
  fullname: Lim, Joseph J
  email: lim@eecs.berkeley.edu
  organization: Univ. of California at Berkeley, Berkeley, CA, USA
– sequence: 3
  givenname: Pablo
  surname: Arbelaez
  fullname: Arbelaez, Pablo
  email: arbelaez@eecs.berkeley.edu
  organization: Univ. of California at Berkeley, Berkeley, CA, USA
– sequence: 4
  givenname: Jitendra
  surname: Malik
  fullname: Malik, Jitendra
  email: malik@eecs.berkeley.edu
  organization: Univ. of California at Berkeley, Berkeley, CA, USA
BookMark eNpNz0FLw0AQBeBVK9jU_oDipX8gcWZ2s9s5SrAqFJSiXstmMxtWNJGkHvz3Fqzg6fH44MHL1KTrO1FqgVAgAl9Xr0_bggC4KAmsI3ei5uxWaMgYzYx4qqYIVueWkc9U9gdEk39wobJxfAMg7QimarGV0Ldd2qe-W36NqWuXg7SHMl6q8-jfR5kfc6Ze1rfP1X2-ebx7qG42eUJX7nMfa3KGwEcODYMHCBptFGFpGGtoPAXNoXRNNFaLqWXFJbuDONA2kp6pq9_dJCK7zyF9-OF7d7yofwCp3EFD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2009.5206727
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424439911
1424439914
EISSN 1063-6919
EndPage 1037
ExternalDocumentID 5206727
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-afb27420af9cd90a00c316fee9ed91b0da2c39c57df463e4be895971b07036f23
IEDL.DBID RIE
ISBN 1424439922
9781424439928
ISSN 1063-6919
IngestDate Wed Aug 27 02:43:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-afb27420af9cd90a00c316fee9ed91b0da2c39c57df463e4be895971b07036f23
PageCount 8
ParticipantIDs ieee_primary_5206727
PublicationCentury 2000
PublicationDate 2009-June
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-June
PublicationDecade 2000
PublicationTitle 2009 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000453166
ssj0003211698
Score 2.2750363
Snippet This paper presents a unified framework for object detection, segmentation, and classification using regions. Region features are appealing in this context...
SourceID ieee
SourceType Publisher
StartPage 1030
SubjectTerms Computer vision
Face detection
Horses
Image databases
Image segmentation
Layout
Object detection
Robustness
Shape
Voting
Title Recognition using regions
URI https://ieeexplore.ieee.org/document/5206727
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTkwFWkT5UgZG3CZx4tpzRVUhFVUVRd0q2zkjhJQiSBd-PbbjBIEY2GJnSM5xdM_37t4B3DgNb7TQmHAziUnGVUpEQRPCuFKSWx-nfW7O4oHN19n9Jt904LathUFEn3yGI3fpufxip_cuVDbOU08cHsCBPbjVtVptPMVCE5oEaOLG1J5smGgZhdR1Y_HMJ6OEiUQ0RV5emLXRfgpjHujPJBbj6dNyVctahqf_aMPivdCsB4vm_evkk9fRvlIj_flL2vG_Bh7B4LveL1q2nuwYOlieQC8A1Cj8_h92qukB0cz1YbhqMpB2ZeSS6J8j1-vB7uUBrGd3j9M5Ce0WyIvFEBWRRjneNpZG6ELEMo61XVGDKLAQiYoLmWoqdD4pTMYoZgq5sMcRe8eJeJmUnkK33JV4BpGFAchYpvOci0y6vqJmkqOxn0RKxagZQt8Zv32rFTW2we7zv6cv4LDmcFzs4xK61fserywUqNS13wNf8IOnXg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEWUzwyMuE3ixLXnClSgraqqRd0q27ERQkoRpAu_HttxgkAMbPFliC6xcs_37t4BXFsNb2WgMaJ6EKKEihixDEeIUCE4NTFOutqcyZSMlsnDKl014KbuhVFKueIz1bOXjsvPNnJrU2X9NHbE4Q7smrifRmW3Vp1RMeAERx6c2DU2ZxvCak4htvNYHPdJMCIsYlWbl5NmrdSf_Jp6AjQKWX_4NJuXwpb--T8Gsbg4dNeCSeVBWX7y2tsWoic_f4k7_tfFA-h8d_wFszqWHUJD5UfQ8hA18D-AD2OqpkBUtjZ051UN0iYPbBn9c2CnPZjd3IHl3e1iOEJ-4AJ6MSiiQFwLy9yGXDOZsZCHoTRvVCvFVMYiEWY8lpjJdJDphGCVCEWZOZCYO1bGS8f4GJr5JlcnEBggoAhJZJpSlnA7WVQPUqXNJ-FcEKy70LbOr99KTY219_v0b_MV7I0Wk_F6fD99PIP9ktGxmZBzaBbvW3VhgEEhLt1--ALorqqn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Recognition+using+regions&rft.au=Chunhui+Gu&rft.au=Lim%2C+Joseph+J&rft.au=Arbelaez%2C+Pablo&rft.au=Malik%2C+Jitendra&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1030&rft.epage=1037&rft_id=info:doi/10.1109%2FCVPR.2009.5206727&rft.externalDocID=5206727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon