Biased random-key genetic algorithm for nonlinearly-constrained global optimization

Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a biased random key genetic algorithm for finding approximate solutions for bound-constrained continuous global optimization problems subject to nonlinear constrain...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE Congress on Evolutionary Computation pp. 2201 - 2206
Main Authors Silva, Ricardo M. A., Resende, Mauricio G. C., Pardalos, Panos M., Faco, Joao L.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…