The 10th annual MLSP competition: Second place
The goal of the MLSP 2014 Classification Challenge was to automatically detect subjects with schizophrenia and schizoaffective disorder based on multimodal features derived from the magnetic resonance imaging (MRI) data. The patients with age range of 18-65 years were diagnosed according to DSM-IV c...
Saved in:
Published in | 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1 - 4 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1551-2541 |
DOI | 10.1109/MLSP.2014.6958887 |
Cover
Loading…
Abstract | The goal of the MLSP 2014 Classification Challenge was to automatically detect subjects with schizophrenia and schizoaffective disorder based on multimodal features derived from the magnetic resonance imaging (MRI) data. The patients with age range of 18-65 years were diagnosed according to DSM-IV criteria. The training data consisted of 46 patients and 40 healthy controls. The test set included 119 748 subjects with unknown labels. In the present solution, we implemented so-called "feature trimming", consisting of: 1) introducing a random vector into the feature set, 2) calculating feature importance based on mean decrease of the Gini-index derived by running Random Forest classification, and 3) removing the features with importance below the "dummy variable". Support Vector Machine with Gaussian Kernel was used to run final classification with reduced feature set achieving test set AUC of 0.923. |
---|---|
AbstractList | The goal of the MLSP 2014 Classification Challenge was to automatically detect subjects with schizophrenia and schizoaffective disorder based on multimodal features derived from the magnetic resonance imaging (MRI) data. The patients with age range of 18-65 years were diagnosed according to DSM-IV criteria. The training data consisted of 46 patients and 40 healthy controls. The test set included 119 748 subjects with unknown labels. In the present solution, we implemented so-called "feature trimming", consisting of: 1) introducing a random vector into the feature set, 2) calculating feature importance based on mean decrease of the Gini-index derived by running Random Forest classification, and 3) removing the features with importance below the "dummy variable". Support Vector Machine with Gaussian Kernel was used to run final classification with reduced feature set achieving test set AUC of 0.923. |
Author | Lebedev, Alexander V. |
Author_xml | – sequence: 1 givenname: Alexander V. surname: Lebedev fullname: Lebedev, Alexander V. email: alexander.vl.lebedev@gmail.com organization: Dept. of Clinical Med., Univ. of Bergen, Bergen, Norway |
BookMark | eNotj91KwzAYQCNMcM4-gHiTF2j9vvw0iXcydAqVDTavR0y-sEqXlrVe-PYq7urcHc65ZrPcZ2LsFqFCBHf_1mw3lQBUVe20tdZcsMIZi8o4J2un6hmbo9ZYCq3wihXj-AkA6GpjrJyzancgjjAduM_5y3f8z8dDfxxoaqe2zw98S6HPkQ-dD3TDLpPvRirOXLD356fd8qVs1qvX5WNTtmj0VPrkIyWhrIpKS6GljsmKD-lVgESAgUT8bZSgQ3JeuBS1SCpRHY0Hq4JcsLt_b0tE--HUHv3pe38-lD_n3kTo |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/MLSP.2014.6958887 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781479936946 1479936944 |
EndPage | 4 |
ExternalDocumentID | 6958887 |
Genre | orig-research |
GroupedDBID | 29M 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-afadef2484d4532535df82b3a4c0fe01ce2d781305cf9a29fd52f4fe6d7a084c3 |
IEDL.DBID | RIE |
ISSN | 1551-2541 |
IngestDate | Wed Aug 27 04:39:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-afadef2484d4532535df82b3a4c0fe01ce2d781305cf9a29fd52f4fe6d7a084c3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6958887 |
PublicationCentury | 2000 |
PublicationDate | 2014-Sept. |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) |
PublicationTitleAbbrev | MLSP |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001967783 ssj0042311 |
Score | 1.9084151 |
Snippet | The goal of the MLSP 2014 Classification Challenge was to automatically detect subjects with schizophrenia and schizoaffective disorder based on multimodal... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Feature extraction Feature Trimming Indexes Magnetic resonance imaging MRI Radio frequency Random Forest Schizophrenia Support vector machine classification Support Vector Machines Vegetation |
Title | The 10th annual MLSP competition: Second place |
URI | https://ieeexplore.ieee.org/document/6958887 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anjxVbcU3OXg0281rd-NVLEWsFGqht5InitCK7F789Sa72xbFg7ewhzAhyc58k2--AbjhLJUFcynWlmrMRc6w9F7ijFFjpJXCuZgamD5nkwV_XIplB253tTDOuZp85pI4rN_y7cZUMVU2yqQIgC3vQjccs6ZWa59PkVEKbfcXDlECabRSBcEBBJH2RZOkcjR9ms8iqYsn7YQ_OqvUjmXch-nWpIZP8p5UpU7M1y-1xv_afAjDfQkfmu2c0xF03PoY-tseDqi90gNIwjlBJC1fUaNOiqLZyNTRdM3mukPziJktqtlbQ1iMH17uJ7jtoYDfQmBQYuWVdZ7yglsuGBVMWF9QzRQ3qXcpMY7avAiOTBgvFZXeCuq5d5nNVVpww06gt96s3Skg75UyRCvLvODaZloTT2yAlI4XMsCOMxjE5a8-GpmMVbvy878_X8BB3IKGrnUJvfKzclfBv5f6ut7YbwX5oa0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844ERp3FsJzErAhVoq0ptpW6VPwVCahFKF349dpK2AjGwRRmis5zk3Tu_ewdww2gscmpjrEyiMOMZxcI5gVOaaC2M4NaG0sBgmPam7HnGZw243fTCWGtL8ZmNwmV5lm-WehVKZd1UcE_Ysh3Y9bjPeNWtta2oiGCGtvkP-zyBVG6pnGBPg0h9pkli0R30x6Mg62JR_cgfs1VKaHlswWAdVKUoeY9WhYr01y-_xv9GfQCdbRMfGm3g6RAadnEErfUUB1R_1G2I_JuCSFy8osqfFIWwkS7z6VLPdYfGgTUbVOq3OjB9fJjc93A9RQG_-dSgwNJJY13CcmYYpwmn3Lg8UVQyHTsbE20Tk-Ueyrh2QibCGZ445mxqMhnnTNNjaC6WC3sCyDkpNVHSUMeZMqlSxBHjSaVlufDE4xTaYfnzj8ooY16v_Ozv29ew15sM-vP-0_DlHPbDdlTirQtoFp8re-nRvlBX5SZ_A7LlpPo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+International+Workshop+on+Machine+Learning+for+Signal+Processing+%28MLSP%29&rft.atitle=The+10th+annual+MLSP+competition%3A+Second+place&rft.au=Lebedev%2C+Alexander+V.&rft.date=2014-09-01&rft.pub=IEEE&rft.issn=1551-2541&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FMLSP.2014.6958887&rft.externalDocID=6958887 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-2541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-2541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-2541&client=summon |