The 10th annual MLSP competition: Second place

The goal of the MLSP 2014 Classification Challenge was to automatically detect subjects with schizophrenia and schizoaffective disorder based on multimodal features derived from the magnetic resonance imaging (MRI) data. The patients with age range of 18-65 years were diagnosed according to DSM-IV c...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1 - 4
Main Author Lebedev, Alexander V.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2014
Subjects
Online AccessGet full text
ISSN1551-2541
DOI10.1109/MLSP.2014.6958887

Cover

Loading…
Abstract The goal of the MLSP 2014 Classification Challenge was to automatically detect subjects with schizophrenia and schizoaffective disorder based on multimodal features derived from the magnetic resonance imaging (MRI) data. The patients with age range of 18-65 years were diagnosed according to DSM-IV criteria. The training data consisted of 46 patients and 40 healthy controls. The test set included 119 748 subjects with unknown labels. In the present solution, we implemented so-called "feature trimming", consisting of: 1) introducing a random vector into the feature set, 2) calculating feature importance based on mean decrease of the Gini-index derived by running Random Forest classification, and 3) removing the features with importance below the "dummy variable". Support Vector Machine with Gaussian Kernel was used to run final classification with reduced feature set achieving test set AUC of 0.923.
AbstractList The goal of the MLSP 2014 Classification Challenge was to automatically detect subjects with schizophrenia and schizoaffective disorder based on multimodal features derived from the magnetic resonance imaging (MRI) data. The patients with age range of 18-65 years were diagnosed according to DSM-IV criteria. The training data consisted of 46 patients and 40 healthy controls. The test set included 119 748 subjects with unknown labels. In the present solution, we implemented so-called "feature trimming", consisting of: 1) introducing a random vector into the feature set, 2) calculating feature importance based on mean decrease of the Gini-index derived by running Random Forest classification, and 3) removing the features with importance below the "dummy variable". Support Vector Machine with Gaussian Kernel was used to run final classification with reduced feature set achieving test set AUC of 0.923.
Author Lebedev, Alexander V.
Author_xml – sequence: 1
  givenname: Alexander V.
  surname: Lebedev
  fullname: Lebedev, Alexander V.
  email: alexander.vl.lebedev@gmail.com
  organization: Dept. of Clinical Med., Univ. of Bergen, Bergen, Norway
BookMark eNotj91KwzAYQCNMcM4-gHiTF2j9vvw0iXcydAqVDTavR0y-sEqXlrVe-PYq7urcHc65ZrPcZ2LsFqFCBHf_1mw3lQBUVe20tdZcsMIZi8o4J2un6hmbo9ZYCq3wihXj-AkA6GpjrJyzancgjjAduM_5y3f8z8dDfxxoaqe2zw98S6HPkQ-dD3TDLpPvRirOXLD356fd8qVs1qvX5WNTtmj0VPrkIyWhrIpKS6GljsmKD-lVgESAgUT8bZSgQ3JeuBS1SCpRHY0Hq4JcsLt_b0tE--HUHv3pe38-lD_n3kTo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MLSP.2014.6958887
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479936946
1479936944
EndPage 4
ExternalDocumentID 6958887
Genre orig-research
GroupedDBID 29M
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-afadef2484d4532535df82b3a4c0fe01ce2d781305cf9a29fd52f4fe6d7a084c3
IEDL.DBID RIE
ISSN 1551-2541
IngestDate Wed Aug 27 04:39:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-afadef2484d4532535df82b3a4c0fe01ce2d781305cf9a29fd52f4fe6d7a084c3
PageCount 4
ParticipantIDs ieee_primary_6958887
PublicationCentury 2000
PublicationDate 2014-Sept.
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-Sept.
PublicationDecade 2010
PublicationTitle 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
PublicationTitleAbbrev MLSP
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001967783
ssj0042311
Score 1.9084151
Snippet The goal of the MLSP 2014 Classification Challenge was to automatically detect subjects with schizophrenia and schizoaffective disorder based on multimodal...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Feature extraction
Feature Trimming
Indexes
Magnetic resonance imaging
MRI
Radio frequency
Random Forest
Schizophrenia
Support vector machine classification
Support Vector Machines
Vegetation
Title The 10th annual MLSP competition: Second place
URI https://ieeexplore.ieee.org/document/6958887
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anjxVbcU3OXg0281rd-NVLEWsFGqht5InitCK7F789Sa72xbFg7ewhzAhyc58k2--AbjhLJUFcynWlmrMRc6w9F7ijFFjpJXCuZgamD5nkwV_XIplB253tTDOuZp85pI4rN_y7cZUMVU2yqQIgC3vQjccs6ZWa59PkVEKbfcXDlECabRSBcEBBJH2RZOkcjR9ms8iqYsn7YQ_OqvUjmXch-nWpIZP8p5UpU7M1y-1xv_afAjDfQkfmu2c0xF03PoY-tseDqi90gNIwjlBJC1fUaNOiqLZyNTRdM3mukPziJktqtlbQ1iMH17uJ7jtoYDfQmBQYuWVdZ7yglsuGBVMWF9QzRQ3qXcpMY7avAiOTBgvFZXeCuq5d5nNVVpww06gt96s3Skg75UyRCvLvODaZloTT2yAlI4XMsCOMxjE5a8-GpmMVbvy878_X8BB3IKGrnUJvfKzclfBv5f6ut7YbwX5oa0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844ERp3FsJzErAhVoq0ptpW6VPwVCahFKF349dpK2AjGwRRmis5zk3Tu_ewdww2gscmpjrEyiMOMZxcI5gVOaaC2M4NaG0sBgmPam7HnGZw243fTCWGtL8ZmNwmV5lm-WehVKZd1UcE_Ysh3Y9bjPeNWtta2oiGCGtvkP-zyBVG6pnGBPg0h9pkli0R30x6Mg62JR_cgfs1VKaHlswWAdVKUoeY9WhYr01y-_xv9GfQCdbRMfGm3g6RAadnEErfUUB1R_1G2I_JuCSFy8osqfFIWwkS7z6VLPdYfGgTUbVOq3OjB9fJjc93A9RQG_-dSgwNJJY13CcmYYpwmn3Lg8UVQyHTsbE20Tk-Ueyrh2QibCGZ445mxqMhnnTNNjaC6WC3sCyDkpNVHSUMeZMqlSxBHjSaVlufDE4xTaYfnzj8ooY16v_Ozv29ew15sM-vP-0_DlHPbDdlTirQtoFp8re-nRvlBX5SZ_A7LlpPo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+International+Workshop+on+Machine+Learning+for+Signal+Processing+%28MLSP%29&rft.atitle=The+10th+annual+MLSP+competition%3A+Second+place&rft.au=Lebedev%2C+Alexander+V.&rft.date=2014-09-01&rft.pub=IEEE&rft.issn=1551-2541&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FMLSP.2014.6958887&rft.externalDocID=6958887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-2541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-2541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-2541&client=summon