Image segmentation with pseudo branch and bound algorithm

Improved branch and minicut method for image segmentation is proposed. The most valuable contribution of proposed algorithm is that, accelerating branch and minicut method, avoiding exhaustive search on whole parameter space, and preserving segmentation quality at the same time, by loosening the con...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 2448 - 2452
Main Authors Hong-Gui Li, Xing-Guo Li
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text
ISBN9781424437023
1424437024
ISSN2160-133X
DOI10.1109/ICMLC.2009.5212215

Cover

Loading…
Abstract Improved branch and minicut method for image segmentation is proposed. The most valuable contribution of proposed algorithm is that, accelerating branch and minicut method, avoiding exhaustive search on whole parameter space, and preserving segmentation quality at the same time, by loosening the condition of being a leaf node. Branch and minicut method utilizes branch and bound algorithm to explore the global minimum of energy function, and the lower bounds of branch and bound algorithm is quickly evaluated by graph cuts algorithm. Pseudo branch and bound algorithm is proposed, through relaxing the update condition of current optimal solution, which is equal to loosening the condition of being a leaf node in branch and minicut method. Experiments results of gray scale and color image segmentation show, proposed algorithm is faster than branch and minicut method, and has almost the same segmentation ability.
AbstractList Improved branch and minicut method for image segmentation is proposed. The most valuable contribution of proposed algorithm is that, accelerating branch and minicut method, avoiding exhaustive search on whole parameter space, and preserving segmentation quality at the same time, by loosening the condition of being a leaf node. Branch and minicut method utilizes branch and bound algorithm to explore the global minimum of energy function, and the lower bounds of branch and bound algorithm is quickly evaluated by graph cuts algorithm. Pseudo branch and bound algorithm is proposed, through relaxing the update condition of current optimal solution, which is equal to loosening the condition of being a leaf node in branch and minicut method. Experiments results of gray scale and color image segmentation show, proposed algorithm is faster than branch and minicut method, and has almost the same segmentation ability.
Author Xing-Guo Li
Hong-Gui Li
Author_xml – sequence: 1
  surname: Hong-Gui Li
  fullname: Hong-Gui Li
  organization: Phys. Coll., Yang zhou Univ., Yangzhou, China
– sequence: 2
  surname: Xing-Guo Li
  fullname: Xing-Guo Li
BookMark eNo1UMFOg0AUXGObWCo_oBd-AHz7dhfYoyFaSTBeNPHW7LIPiilLAzTGv5fEOoeZTDIzhwnYyg-eGLvjkHAO-qEsXqsiQQCdKOSIXF2xgEuUUmQg8JqFOsv_PYoV2yBPIeZCfK5ZsPRyzblWeMPCafqCBVJhlooN02VvWoomanvys5m7wUff3XyIThOd3RDZ0fj6EBnvIjucFzbHdhiXQH_L1o05ThRedMs-np_ei5e4etuVxWMVdzxTc2wIZSqIVG7JCHQia7ChPCeSNfBGWZsCaiBlMwKHIBfVUJOVTjaNk2LL7v92OyLan8auN-PP_nKD-AVgz07U
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212215
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 2452
ExternalDocumentID 5212215
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-ae2463ee58bea32d37f2fe88ee4c01f5bb60290e5b7e0d204b7e90ceb4d4ffd43
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:20:46 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-ae2463ee58bea32d37f2fe88ee4c01f5bb60290e5b7e0d204b7e90ceb4d4ffd43
PageCount 5
ParticipantIDs ieee_primary_5212215
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4280515
Snippet Improved branch and minicut method for image segmentation is proposed. The most valuable contribution of proposed algorithm is that, accelerating branch and...
SourceID ieee
SourceType Publisher
StartPage 2448
SubjectTerms Branch and bound
branch and minicut
Cybernetics
grabcut
graph cuts
Image segmentation
Machine learning
Title Image segmentation with pseudo branch and bound algorithm
URI https://ieeexplore.ieee.org/document/5212215
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhx6ziO48wVVYsoYqBSt8ofl4KgadUmC78eOx9FIAamxFGkJFaSd3e-9x5Ct4EKXBhOJVEUJOGGC6JtwIhywYBDb4co4Av60ycxnvGHeTRvobs9FwYAyuYz6Pvdci3frk3hS2UDzzNlnlF-4BK3iqu1r6d4afC4lpIqx7FLPErDPBYISlwqNm94XWHsgKmRe6rHYUOooclgMpw-Dispy_qKP6xXSuQZddC0ueeq4eS9X-S6bz5_yTn-96GOUO-b44ef9-h1jFqQnaBOY_KA62--i5LJyv1y8A6Wq5qmlGFfvMWbHRR2jbV35njFKrNYe4smrD6W6607YdVDs9H9y3BMar8F8uaCiJwoYFyEAJHUoEJmwzhlKUgJwA0N0khrQVlCIdIxUMsod9uEGtDc8jS1PDxF7WydwRnCYLXh0kQKIsHBKC2FsEqzVBpjgkSeo66ficWmktRY1JNw8ffhS3RYLeL4Ltkr1M63BVy7WCDXN-VL8AVlrqxZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvSECsZve_DooOu6rTsTCSgjHiDhRvrxDo0yCGwXf73tPjAaD562Lku2Ne2et2_f53kQuneFa8Jwwh1BgDtMscCR2qWOMMGAQW-DKGAT-vEkGM7Y09yfN9DDngsDAEXxGXTtabGXr9cqt6mynuWZUssoPzC4z6KSrbXPqFhx8LASkyraoVl6FJZ51A2IYxZj85rZ5YUGmmrBp6rt1ZQaEvVG_XjcL8Usq2f-MF8psGfQQnH91mXJyXs3z2RXff4SdPzvZx2jzjfLD7_s8esENSA9Ra3a5gFXs76NotHK_HTwDpariqiUYpu-xZsd5HqNpfXmeMUi1VhakyYsPpbrrblh1UGzweO0P3QqxwXnzYQRmSOAssAD8LkE4VHthQlNgHMApoib-FIGhEYEfBkC0ZQwc4yIAsk0SxLNvDPUTNcpnCMMWirGlS_ADxgoIXkQaCFpwpVSbsQvUNv2xGJTimosqk64_PvyHTocTuPxYjyaPF-ho3JLx9bMXqNmts3hxkQGmbwtBsQXqDOvqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Image+segmentation+with+pseudo+branch+and+bound+algorithm&rft.au=Hong-Gui+Li&rft.au=Xing-Guo+Li&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=4&rft.spage=2448&rft.epage=2452&rft_id=info:doi/10.1109%2FICMLC.2009.5212215&rft.externalDocID=5212215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon