Densely Connected Pyramid Dehazing Network

We propose a new end-to-end single image dehazing method, called Densely Connected Pyramid Dehazing Network (DCPDN), which can jointly learn the transmission map, atmospheric light and dehazing all together. The end-to-end learning is achieved by directly embedding the atmospheric scattering model i...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 3194 - 3203
Main Authors Zhang, He, Patel, Vishal M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a new end-to-end single image dehazing method, called Densely Connected Pyramid Dehazing Network (DCPDN), which can jointly learn the transmission map, atmospheric light and dehazing all together. The end-to-end learning is achieved by directly embedding the atmospheric scattering model into the network, thereby ensuring that the proposed method strictly follows the physics-driven scattering model for dehazing. Inspired by the dense network that can maximize the information flow along features from different levels, we propose a new edge-preserving densely connected encoder-decoder structure with multi-level pyramid pooling module for estimating the transmission map. This network is optimized using a newly introduced edge-preserving loss function. To further incorporate the mutual structural information between the estimated transmission map and the dehazed result, we propose a joint-discriminator based on generative adversarial network framework to decide whether the corresponding dehazed image and the estimated transmission map are real or fake. An ablation study is conducted to demonstrate the effectiveness of each module evaluated at both estimated transmission map and dehazed result. Extensive experiments demonstrate that the proposed method achieves significant improvements over the state-of-the-art methods. Code and dataset is made available at: https://github.com/hezhangsprinter/DCPDN
AbstractList We propose a new end-to-end single image dehazing method, called Densely Connected Pyramid Dehazing Network (DCPDN), which can jointly learn the transmission map, atmospheric light and dehazing all together. The end-to-end learning is achieved by directly embedding the atmospheric scattering model into the network, thereby ensuring that the proposed method strictly follows the physics-driven scattering model for dehazing. Inspired by the dense network that can maximize the information flow along features from different levels, we propose a new edge-preserving densely connected encoder-decoder structure with multi-level pyramid pooling module for estimating the transmission map. This network is optimized using a newly introduced edge-preserving loss function. To further incorporate the mutual structural information between the estimated transmission map and the dehazed result, we propose a joint-discriminator based on generative adversarial network framework to decide whether the corresponding dehazed image and the estimated transmission map are real or fake. An ablation study is conducted to demonstrate the effectiveness of each module evaluated at both estimated transmission map and dehazed result. Extensive experiments demonstrate that the proposed method achieves significant improvements over the state-of-the-art methods. Code and dataset is made available at: https://github.com/hezhangsprinter/DCPDN
Author Patel, Vishal M.
Zhang, He
Author_xml – sequence: 1
  givenname: He
  surname: Zhang
  fullname: Zhang, He
– sequence: 2
  givenname: Vishal M.
  surname: Patel
  fullname: Patel, Vishal M.
BookMark eNotzUtLw0AUQOFRFKw1axdushYS7-TO485SUl9QtIi6LdPMHY22E0kCEn-9gq7O7jvH4iB1iYU4lVBKCe6iflk9lhVIKgEQ7Z7InCWpkYxRFbh9MZNgsDBOuiORDcM7AFSGkJSeifMFp4G3U153KXEzcshXU-93bcgX_Oa_2_Sa3_P41fUfJ-Iw-u3A2X_n4vn66qm-LZYPN3f15bJopdVj4YOGDSlVecekPBL9_tBvwEem2GClnQxRYbSNUo1GFTWbwDaCMUA64Fyc_bktM68_-3bn-2lN2pJCjT-jXUNB
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00337
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 3203
ExternalDocumentID 8578435
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-ad50b8442a9e84a3880003ab0afe8fc32591df43f7c44c534f5e6de7f066085d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-ad50b8442a9e84a3880003ab0afe8fc32591df43f7c44c534f5e6de7f066085d3
PageCount 10
ParticipantIDs ieee_primary_8578435
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6171513
Snippet We propose a new end-to-end single image dehazing method, called Densely Connected Pyramid Dehazing Network (DCPDN), which can jointly learn the transmission...
SourceID ieee
SourceType Publisher
StartPage 3194
SubjectTerms Atmospheric modeling
Degradation
Estimation
Gallium nitride
Generative adversarial networks
Image edge detection
Optimization
Title Densely Connected Pyramid Dehazing Network
URI https://ieeexplore.ieee.org/document/8578435
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7O3gyDta167ozSIiJhBgx3Eh_vCoxAsFxwL_edpsYjQdv605922u-77Xf-wpwlTBNTOSTF60JHQQkoWNFJoxNLFOVpZaUKt8RH07Y3TSZ1uBm1wuDiIX4DDv-sTjLN0u98VtlXeHSy8F7HequcCt7tXb7KTEXVFQnZH5MXWXDM1G5-ZAo6_aexg9ey-XFk5T-vE6lQJNBE-6_5lGKSF47m1x19Mcvi8b_TnQf2t99e8F4h0gHUMPFITQrohlUy_i9Bdd99I3o26CQuWhHOoPxdi3f5ibo44s3nH4ORqU-vA2Twe1jbxhWlyaEc8cE8lCaJFKCsVhmKJj0Xi8uXKkiaVFYTV25Q4xl1KaaMZ1QZhPkBlPruIejX4YeQWOxXOAxBMgpIahSLiPFJCcq1RHRxsY6UzEKcwItH_psVfpizKqoT_9-fQZ7_uOXMqtzaOTrDV44QM_VZfEnPwHR7J5T
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSECsZv9-DJuLjddne7Z5CgAiEGDDfSj6kSIxiEA_56290Vo_Hgre1pJm3zXts3rwAXEVNEB27xotG-hYDIt6xI-6EORSLTxJBc5duL20N2N4pGJbha18IgYiY-w7prZm_5eqaW7qrsmtvlZeF9AzYt7kckr9Za36iEMae8eCNzfWrPNnHKCz8fEqTXjcf-g1NzOfkkpT8_VMnwpFWB7lckuYzkpb5cyLr6-GXS-N9Qd6D2Xbnn9deYtAslnO5BpaCaXrGR36tw2URXir7yMqGLsrTT66_m4nWivSY-O8vpJ6-XK8RrMGzdDBptv_g2wZ9YLrDwhY4CyRkLRYqcCef2YtMVMhAGuVHUHniINoyaRDGmIspMhLHGxFj2YQmYpvtQns6meAAexpQQlEksAslETGSiAqK0CVUqQ-T6EKou9fFb7owxLrI--nv4HLbag25n3Lnt3R_DtpuIXHR1AuXFfImnFt4X8iyb1U9JKaGc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Densely+Connected+Pyramid+Dehazing+Network&rft.au=Zhang%2C+He&rft.au=Patel%2C+Vishal+M.&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3194&rft.epage=3203&rft_id=info:doi/10.1109%2FCVPR.2018.00337&rft.externalDocID=8578435