Cascade object detection with deformable part models
We describe a general method for building cascade classifiers from part-based deformable models such as pictorial structures. We focus primarily on the case of star-structured models and show how a simple algorithm based on partial hypothesis pruning can speed up object detection by more than one or...
Saved in:
Published in | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 2241 - 2248 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 1424469848 9781424469840 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2010.5539906 |
Cover
Loading…
Abstract | We describe a general method for building cascade classifiers from part-based deformable models such as pictorial structures. We focus primarily on the case of star-structured models and show how a simple algorithm based on partial hypothesis pruning can speed up object detection by more than one order of magnitude without sacrificing detection accuracy. In our algorithm, partial hypotheses are pruned with a sequence of thresholds. In analogy to probably approximately correct (PAC) learning, we introduce the notion of probably approximately admissible (PAA) thresholds. Such thresholds provide theoretical guarantees on the performance of the cascade method and can be computed from a small sample of positive examples. Finally, we outline a cascade detection algorithm for a general class of models defined by a grammar formalism. This class includes not only tree-structured pictorial structures but also richer models that can represent each part recursively as a mixture of other parts. |
---|---|
AbstractList | We describe a general method for building cascade classifiers from part-based deformable models such as pictorial structures. We focus primarily on the case of star-structured models and show how a simple algorithm based on partial hypothesis pruning can speed up object detection by more than one order of magnitude without sacrificing detection accuracy. In our algorithm, partial hypotheses are pruned with a sequence of thresholds. In analogy to probably approximately correct (PAC) learning, we introduce the notion of probably approximately admissible (PAA) thresholds. Such thresholds provide theoretical guarantees on the performance of the cascade method and can be computed from a small sample of positive examples. Finally, we outline a cascade detection algorithm for a general class of models defined by a grammar formalism. This class includes not only tree-structured pictorial structures but also richer models that can represent each part recursively as a mixture of other parts. |
Author | Girshick, R B McAllester, D Felzenszwalb, P F |
Author_xml | – sequence: 1 givenname: P F surname: Felzenszwalb fullname: Felzenszwalb, P F email: pff@cs.uchicago.edu organization: Univ. of Chicago, Chicago, IL, USA – sequence: 2 givenname: R B surname: Girshick fullname: Girshick, R B email: rbg@cs.uchicago.edu organization: Univ. of Chicago, Chicago, IL, USA – sequence: 3 givenname: D surname: McAllester fullname: McAllester, D email: mcallester@ttic.edu organization: TTI at Chicago, IL, USA |
BookMark | eNpNj9tKxDAURaOO4HT0A8SX_kDHk1uT8yjFGwwoouLbkCYn2KGXoS2If2_AAX3abBbsS8YW_dATY5cc1pwDXlfvzy9rAclqLRGhPGIZV0KpEq38OGZLDqUsSuR48geUXfwDZyybph2AkEbAkqnKTd4Fyod6R37OA81JmqHPv5r5M9k4jJ2rW8r3bpzzbgjUTufsNLp2oouDrtjb3e1r9VBsnu4fq5tN0XCj58LVFtFBENZ5KaM2IVWmVRqj8hCN9YpEcLWXYJT2HKPBINIwH22sSy1X7Oo3tyGi7X5sOjd-bw_X5Q-fxkpj |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2010.5539906 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 142446983X 9781424469833 9781424469857 1424469856 |
EISSN | 1063-6919 |
EndPage | 2248 |
ExternalDocumentID | 5539906 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-ab899a0d28ac33f57d72014259f4c0f78c4e2dabc30745c19f79d2237cf8fb653 |
IEDL.DBID | RIE |
ISBN | 1424469848 9781424469840 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:49:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-ab899a0d28ac33f57d72014259f4c0f78c4e2dabc30745c19f79d2237cf8fb653 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5539906 |
PublicationCentury | 2000 |
PublicationDate | 2010-June |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-June |
PublicationDecade | 2010 |
PublicationTitle | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0000451957 ssj0003211698 |
Score | 2.371729 |
Snippet | We describe a general method for building cascade classifiers from part-based deformable models such as pictorial structures. We focus primarily on the case of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2241 |
SubjectTerms | Buildings Deformable models Detection algorithms Dynamic programming Object detection Statistical analysis Statistical distributions Testing Training data Visualization |
Title | Cascade object detection with deformable part models |
URI | https://ieeexplore.ieee.org/document/5539906 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ09TN_GbHDyaLV2TtDkPxxAmQ5zsNvIJonTDdRf_el_SD1E8eOsLKW0eafN7X7-H0C1LtQYzgJJADkeY9JRIl3HCqQ9saVokNlQjzx_FbMkeVnzVQXdtLYxzLiafuWG4jLF8uzH74Cob8UCjGvi1D8Bwq2q1Wn9KxZOStXIKlo2QbURhHLqxxMinSImQiWyKvGAOyxvup1puwp8JlaPJy-KpygCrn_6jDUs8haY9NG_ev0o-eRvuSz00n7-oHf-7wCM0-K73w4v2JDtGHVecoF4NUHH9-e9gqOkB0Yz1EZuoXUixxxsdPDrYujImdxU4eHhBjKBYvzu8hU2KY-Od3QAtp_fPkxmpOzGQV4AXJVEazDJF7ThXJk09zyxoE9TFpWeG-iw3zI2t0gb-GIybRPpMWgAemfG514Knp6hbbAp3hjCXhlq4UwHygYOR5QGEeWkETPde6XPUD3pZbyuyjXWtkou_hy_RYRXOD26RK9QtP_buGlBCqW_i9vgCLA-wzA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvSECsa3PXi0sMu2u9szkaACIQYMN9JnYjQLkeXir3fafRiNB287TZtNJ03n6zy-QeiWRlLCMyAgjhyOUG4Dwk3CCAusY0uTcahdNfJkGo8W9HHJlg10V9fCGGN88pnpuk8fy9drtXOush5zNKqOX3uPuWLcolqr9qgUTClJLUfwtol5HVPou34sPvYZRyTmIa_KvGAOTSv2p1KuAqBhwHuDl9lzkQNW_v9HIxZvh4YtNKl2UKSfvHV3ueyqz1_kjv_d4iHqfFf84Vlty45Qw2THqFVCVFxeAFsYqrpAVGNtRAdi65Ls8Vo6nw7WJvfpXRl2Pl4QPSyW7wZv4Jhi33pn20GL4f18MCJlLwbyCgAjJ0LCw0wEup8KFUWWJRq0Cepi3FIV2CRV1PS1kAruDMpUyG3CNUCPRNnUyphFJ6iZrTNzijDjKtCwUgD2AdNIUwfDLFcxTLdWyDPUdnpZbQq6jVWpkvO_h2_Q_mg-Ga_GD9OnC3RQBPedk-QSNfOPnbkCzJDLa39UvgCdn7QU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Cascade+object+detection+with+deformable+part+models&rft.au=Felzenszwalb%2C+P+F&rft.au=Girshick%2C+R+B&rft.au=McAllester%2C+D&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424469840&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2241&rft.epage=2248&rft_id=info:doi/10.1109%2FCVPR.2010.5539906&rft.externalDocID=5539906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |