Cascade object detection with deformable part models

We describe a general method for building cascade classifiers from part-based deformable models such as pictorial structures. We focus primarily on the case of star-structured models and show how a simple algorithm based on partial hypothesis pruning can speed up object detection by more than one or...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 2241 - 2248
Main Authors Felzenszwalb, P F, Girshick, R B, McAllester, D
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2010
Subjects
Online AccessGet full text
ISBN1424469848
9781424469840
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2010.5539906

Cover

Loading…
Abstract We describe a general method for building cascade classifiers from part-based deformable models such as pictorial structures. We focus primarily on the case of star-structured models and show how a simple algorithm based on partial hypothesis pruning can speed up object detection by more than one order of magnitude without sacrificing detection accuracy. In our algorithm, partial hypotheses are pruned with a sequence of thresholds. In analogy to probably approximately correct (PAC) learning, we introduce the notion of probably approximately admissible (PAA) thresholds. Such thresholds provide theoretical guarantees on the performance of the cascade method and can be computed from a small sample of positive examples. Finally, we outline a cascade detection algorithm for a general class of models defined by a grammar formalism. This class includes not only tree-structured pictorial structures but also richer models that can represent each part recursively as a mixture of other parts.
AbstractList We describe a general method for building cascade classifiers from part-based deformable models such as pictorial structures. We focus primarily on the case of star-structured models and show how a simple algorithm based on partial hypothesis pruning can speed up object detection by more than one order of magnitude without sacrificing detection accuracy. In our algorithm, partial hypotheses are pruned with a sequence of thresholds. In analogy to probably approximately correct (PAC) learning, we introduce the notion of probably approximately admissible (PAA) thresholds. Such thresholds provide theoretical guarantees on the performance of the cascade method and can be computed from a small sample of positive examples. Finally, we outline a cascade detection algorithm for a general class of models defined by a grammar formalism. This class includes not only tree-structured pictorial structures but also richer models that can represent each part recursively as a mixture of other parts.
Author Girshick, R B
McAllester, D
Felzenszwalb, P F
Author_xml – sequence: 1
  givenname: P F
  surname: Felzenszwalb
  fullname: Felzenszwalb, P F
  email: pff@cs.uchicago.edu
  organization: Univ. of Chicago, Chicago, IL, USA
– sequence: 2
  givenname: R B
  surname: Girshick
  fullname: Girshick, R B
  email: rbg@cs.uchicago.edu
  organization: Univ. of Chicago, Chicago, IL, USA
– sequence: 3
  givenname: D
  surname: McAllester
  fullname: McAllester, D
  email: mcallester@ttic.edu
  organization: TTI at Chicago, IL, USA
BookMark eNpNj9tKxDAURaOO4HT0A8SX_kDHk1uT8yjFGwwoouLbkCYn2KGXoS2If2_AAX3abBbsS8YW_dATY5cc1pwDXlfvzy9rAclqLRGhPGIZV0KpEq38OGZLDqUsSuR48geUXfwDZyybph2AkEbAkqnKTd4Fyod6R37OA81JmqHPv5r5M9k4jJ2rW8r3bpzzbgjUTufsNLp2oouDrtjb3e1r9VBsnu4fq5tN0XCj58LVFtFBENZ5KaM2IVWmVRqj8hCN9YpEcLWXYJT2HKPBINIwH22sSy1X7Oo3tyGi7X5sOjd-bw_X5Q-fxkpj
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2010.5539906
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 142446983X
9781424469833
9781424469857
1424469856
EISSN 1063-6919
EndPage 2248
ExternalDocumentID 5539906
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-ab899a0d28ac33f57d72014259f4c0f78c4e2dabc30745c19f79d2237cf8fb653
IEDL.DBID RIE
ISBN 1424469848
9781424469840
ISSN 1063-6919
IngestDate Wed Aug 27 02:49:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-ab899a0d28ac33f57d72014259f4c0f78c4e2dabc30745c19f79d2237cf8fb653
PageCount 8
ParticipantIDs ieee_primary_5539906
PublicationCentury 2000
PublicationDate 2010-June
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-June
PublicationDecade 2010
PublicationTitle 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000451957
ssj0003211698
Score 2.371729
Snippet We describe a general method for building cascade classifiers from part-based deformable models such as pictorial structures. We focus primarily on the case of...
SourceID ieee
SourceType Publisher
StartPage 2241
SubjectTerms Buildings
Deformable models
Detection algorithms
Dynamic programming
Object detection
Statistical analysis
Statistical distributions
Testing
Training data
Visualization
Title Cascade object detection with deformable part models
URI https://ieeexplore.ieee.org/document/5539906
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ09TN_GbHDyaLV2TtDkPxxAmQ5zsNvIJonTDdRf_el_SD1E8eOsLKW0eafN7X7-H0C1LtQYzgJJADkeY9JRIl3HCqQ9saVokNlQjzx_FbMkeVnzVQXdtLYxzLiafuWG4jLF8uzH74Cob8UCjGvi1D8Bwq2q1Wn9KxZOStXIKlo2QbURhHLqxxMinSImQiWyKvGAOyxvup1puwp8JlaPJy-KpygCrn_6jDUs8haY9NG_ev0o-eRvuSz00n7-oHf-7wCM0-K73w4v2JDtGHVecoF4NUHH9-e9gqOkB0Yz1EZuoXUixxxsdPDrYujImdxU4eHhBjKBYvzu8hU2KY-Od3QAtp_fPkxmpOzGQV4AXJVEazDJF7ThXJk09zyxoE9TFpWeG-iw3zI2t0gb-GIybRPpMWgAemfG514Knp6hbbAp3hjCXhlq4UwHygYOR5QGEeWkETPde6XPUD3pZbyuyjXWtkou_hy_RYRXOD26RK9QtP_buGlBCqW_i9vgCLA-wzA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvSECsa3PXi0sMu2u9szkaACIQYMN9JnYjQLkeXir3fafRiNB287TZtNJ03n6zy-QeiWRlLCMyAgjhyOUG4Dwk3CCAusY0uTcahdNfJkGo8W9HHJlg10V9fCGGN88pnpuk8fy9drtXOush5zNKqOX3uPuWLcolqr9qgUTClJLUfwtol5HVPou34sPvYZRyTmIa_KvGAOTSv2p1KuAqBhwHuDl9lzkQNW_v9HIxZvh4YtNKl2UKSfvHV3ueyqz1_kjv_d4iHqfFf84Vlty45Qw2THqFVCVFxeAFsYqrpAVGNtRAdi65Ls8Vo6nw7WJvfpXRl2Pl4QPSyW7wZv4Jhi33pn20GL4f18MCJlLwbyCgAjJ0LCw0wEup8KFUWWJRq0Cepi3FIV2CRV1PS1kAruDMpUyG3CNUCPRNnUyphFJ6iZrTNzijDjKtCwUgD2AdNIUwfDLFcxTLdWyDPUdnpZbQq6jVWpkvO_h2_Q_mg-Ga_GD9OnC3RQBPedk-QSNfOPnbkCzJDLa39UvgCdn7QU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Cascade+object+detection+with+deformable+part+models&rft.au=Felzenszwalb%2C+P+F&rft.au=Girshick%2C+R+B&rft.au=McAllester%2C+D&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424469840&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2241&rft.epage=2248&rft_id=info:doi/10.1109%2FCVPR.2010.5539906&rft.externalDocID=5539906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon