Robust Sparse Hashing

We study Nearest Neighbors (NN) retrieval by introducing a new approach: Robust Sparse Hashing (RSH). Our approach is inspired by the success of dictionary learning for sparse coding; the key innovation is to use learned sparse codes as hashcodes for speeding up NN. But sparse coding suffers from a...

Full description

Saved in:
Bibliographic Details
Published in2012 19th IEEE International Conference on Image Processing pp. 2417 - 2420
Main Authors Cherian, A., Morellas, V., Papanikolopoulos, N.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2012
Subjects
Online AccessGet full text
ISBN1467325341
9781467325349
ISSN1522-4880
DOI10.1109/ICIP.2012.6467385

Cover

Loading…
Abstract We study Nearest Neighbors (NN) retrieval by introducing a new approach: Robust Sparse Hashing (RSH). Our approach is inspired by the success of dictionary learning for sparse coding; the key innovation is to use learned sparse codes as hashcodes for speeding up NN. But sparse coding suffers from a major drawback: when data are noisy or uncertain, for a query point, an exact match of the hashcode seldom happens, breaking the NN retrieval. We tackle this difficulty via our novel dictionary learning and sparse coding framework called RSH by learning dictionaries on the robustified counterparts of uncertain data points. The algorithm is applied to NN retrieval for Scale Invariant Feature Transform (SIFT) descriptors. The results demonstrate that RSH is noise tolerant, and at the same time shows promising NN performance over the state-of-the-art.
AbstractList We study Nearest Neighbors (NN) retrieval by introducing a new approach: Robust Sparse Hashing (RSH). Our approach is inspired by the success of dictionary learning for sparse coding; the key innovation is to use learned sparse codes as hashcodes for speeding up NN. But sparse coding suffers from a major drawback: when data are noisy or uncertain, for a query point, an exact match of the hashcode seldom happens, breaking the NN retrieval. We tackle this difficulty via our novel dictionary learning and sparse coding framework called RSH by learning dictionaries on the robustified counterparts of uncertain data points. The algorithm is applied to NN retrieval for Scale Invariant Feature Transform (SIFT) descriptors. The results demonstrate that RSH is noise tolerant, and at the same time shows promising NN performance over the state-of-the-art.
Author Cherian, A.
Morellas, V.
Papanikolopoulos, N.
Author_xml – sequence: 1
  givenname: A.
  surname: Cherian
  fullname: Cherian, A.
  organization: Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: V.
  surname: Morellas
  fullname: Morellas, V.
  organization: Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: N.
  surname: Papanikolopoulos
  fullname: Papanikolopoulos, N.
  organization: Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA
BookMark eNo1j0tLw1AQRkesYFO7dCFu-gcSZ-77LiVYGygoPtZlkkw0omnJrQv_vYp1dTiL88GXwWTYDgJwQVgQYbyqyuq-UEiqcMZ5HewRzKMP9CvKaq2OIfsXQxOYklUqNyHgKWQpvSH-xJqmcP6wrT_TfvG44zHJYsXptR9ezuCk4_ck8wNn8Ly8eSpX-frutiqv13lP3u5zjt7XnshFxlaCYtbUNl2DgpY46MC1a421KK4NFFUnzrCOgVTTOlOjnsHl324vIpvd2H_w-LU5XNLfAhY88w
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2012.6467385
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781467325332
1467325325
9781467325325
1467325333
EndPage 2420
ExternalDocumentID 6467385
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-a977b71169a0de82aa31dcfc0e051a838ab6d4550e6d8192fe64a39812cd64b03
IEDL.DBID RIE
ISBN 1467325341
9781467325349
ISSN 1522-4880
IngestDate Wed Aug 27 04:19:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a977b71169a0de82aa31dcfc0e051a838ab6d4550e6d8192fe64a39812cd64b03
PageCount 4
ParticipantIDs ieee_primary_6467385
PublicationCentury 2000
PublicationDate 2012-Sept.
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-Sept.
PublicationDecade 2010
PublicationTitle 2012 19th IEEE International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0001106265
Score 1.8858466
Snippet We study Nearest Neighbors (NN) retrieval by introducing a new approach: Robust Sparse Hashing (RSH). Our approach is inspired by the success of dictionary...
SourceID ieee
SourceType Publisher
StartPage 2417
SubjectTerms Data models
Dictionaries
Nearest neighbors
Noise
Optimization
Robust optimization
Robustness
Sparse coding
Uncertainty
Vectors
Title Robust Sparse Hashing
URI https://ieeexplore.ieee.org/document/6467385
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2nTgNWBFv9cCRdn2kaXOemDYk0ARM2m3Kw5UQ0jax9sKvx2mzTSAO3JqqUes0if3F9meAOyFywXXJA641ARSVxbQPEnBFxQTpxwJ1G23xzCdz9rjIFh243-fCIGITfIahvWx8-Wata3tUNuTM1qjMutAl4Nbmah3OUwjbNEzvDmxZHpmGK5XAlp2kTVIXdU8y2rd3XE-uLZy7M47EcDqazmzEVxK6t_0ou9JonXEfnnbf2wabfIR1pUL99YvK8b8CHYN3yO_zZ3vNdQIdXJ1C3xmkvlvu2wF4L2tVbyv_dUPwF_1JW3jJg_n44W00CVwdheCdjIMqkGTjqTyOuZCRwSKRMo2NLnWEtCJlkRZScWOzm5Eby49WImcyFaT6teFMRekZ9FbrFZ6DX5ZlKjFLpM4No-70kDBK57Jk1uUrLmBgpVxuWqqMpRPw8u_bV3BkR7oN2bqGXvVZ4w3p-ErdNj_3G8eInFA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3PXi0pc9t90wkRYEQhYQb2WdiTIBIe_HXO9suEI0Hb23TbTu73Z35dma-AXigNKVEaOISIRCg8CTAdRCBq-IxRf2YKVFHW4xJPouf58m8AY-7XBilVBV8pjxzWPny5UqUZqusS2JTozI5gMPEJOPW2Vr7HRVENxXXu4VbhkmmYktFuGV-0yqtCx8QJrhyb9me7Dm1Ds_Ap91BbzAxMV-hZ9_3o_BKpXf6LRhtv7gON_nwyoJ74usXmeN_RTqBzj7Dz5nsdNcpNNTyDFrWJHXshN-0ofO64uWmcN7WCICVk9ellzow6z9Ne7lrKym472geFC5DK4-nQUAo86XKQsaiQAotfIVzkmVRxjiRpksVkYYhTSsSs4ii8heSxNyPzqG5XC3VBTha64ipJGQilTE2x5uo5CJlOjZOX3oJbSPlYl2TZSysgFd_X76Ho3w6Gi6Gg_HLNRybXq8DuG6gWXyW6hY1fsHvqoH-BitWn5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+19th+IEEE+International+Conference+on+Image+Processing&rft.atitle=Robust+Sparse+Hashing&rft.au=Cherian%2C+A.&rft.au=Morellas%2C+V.&rft.au=Papanikolopoulos%2C+N.&rft.date=2012-09-01&rft.pub=IEEE&rft.isbn=9781467325349&rft.issn=1522-4880&rft.spage=2417&rft.epage=2420&rft_id=info:doi/10.1109%2FICIP.2012.6467385&rft.externalDocID=6467385
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon