Self-training classifier via local learning regularization

Self-training learning is one of the most important semi-supervised learning paradigms in which a learner keeps on classifying the unlabeled examples and retaining the most confident examples to the training set. With the increasing training set, it is possible to enhance the classification performa...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 1; pp. 454 - 459
Main Authors Yong Cheng, Ruilian Zhao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self-training learning is one of the most important semi-supervised learning paradigms in which a learner keeps on classifying the unlabeled examples and retaining the most confident examples to the training set. With the increasing training set, it is possible to enhance the classification performance on unseen data. However, sometimes the classifier misclassifies some unlabeled examples and keeps them in the training set, which worse the classification performance. In this paper, we present a novel method based on local consistency to eliminate the noises. According the manifold assumption, an unlabeled example expects to join the training set if its label given by classifier should be consistent with the local neighborhood in the training set on the manifold. We test the new method on several data sets from synthetic and real-world data from UCI, the empirical result indicates the proposed approach is effective and reliable.
AbstractList Self-training learning is one of the most important semi-supervised learning paradigms in which a learner keeps on classifying the unlabeled examples and retaining the most confident examples to the training set. With the increasing training set, it is possible to enhance the classification performance on unseen data. However, sometimes the classifier misclassifies some unlabeled examples and keeps them in the training set, which worse the classification performance. In this paper, we present a novel method based on local consistency to eliminate the noises. According the manifold assumption, an unlabeled example expects to join the training set if its label given by classifier should be consistent with the local neighborhood in the training set on the manifold. We test the new method on several data sets from synthetic and real-world data from UCI, the empirical result indicates the proposed approach is effective and reliable.
Author Ruilian Zhao
Yong Cheng
Author_xml – sequence: 1
  surname: Yong Cheng
  fullname: Yong Cheng
  organization: Dept. of Comput. Sci., Beijing Univ. of Chem. Technol., Beijing, China
– sequence: 2
  surname: Ruilian Zhao
  fullname: Ruilian Zhao
  organization: Dept. of Comput. Sci., Beijing Univ. of Chem. Technol., Beijing, China
BookMark eNo1UNFKw0AQPLEF29of0Jf8QOre3l0u55sEq4WIDyr4VtbLppycqVyioF9v0Dovw8wwCztzMen2HQtxJmElJbiLTXVXVysEcCuDEg3YIzGXGrVWFhQei6Wz5b9GNREzlAXkUqnnqZiPvdJJ6QyeiGXfv8IIbdAWaiYuHzi2-ZAodKHbZT5S34c2cMo-A2Vx7ylmkSn9pol3H5FS-KYh7LtTMW0p9rw88EI8ra8fq9u8vr_ZVFd1HqQ1Q04O2TtfmBYcETZUtB6YNcNoqbKQQATGtGitL8cP2LimKZsX0hb16KmFOP-7G5h5-57CG6Wv7WEH9QPe3E7v
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212507
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 459
ExternalDocumentID 5212507
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-a92ec9c65f09aa2da6fc0ee4e065f38610aa055f277c8244e59dd8dba472477c3
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:21:16 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a92ec9c65f09aa2da6fc0ee4e065f38610aa055f277c8244e59dd8dba472477c3
PageCount 6
ParticipantIDs ieee_primary_5212507
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4194896
Snippet Self-training learning is one of the most important semi-supervised learning paradigms in which a learner keeps on classifying the unlabeled examples and...
SourceID ieee
SourceType Publisher
StartPage 454
SubjectTerms Cybernetics
Machine learning
Manifold Learning
Self-training
Semi-supervised Learning
Title Self-training classifier via local learning regularization
URI https://ieeexplore.ieee.org/document/5212507
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbGRhx6ziJHbNWVAVRhASVulX-OKMK1KIqZeDXYztOEYiBLfaS5BTn3dn33kPoUlJeWi0ktpQAziW4NaeMxqlmTNHcpKn1heLkgY2n-d2smLXQ1ZYLAwCh-Qz6_jKc5ZuV3vitsoHnmRaeOr7jCreaq7XdT_HS4DxKSYUxd4VHMMyjKSPYlWKzhteVcQdMjdxTHGcNoYaIwe1wcj-spSzjHX9YrwTkGXXQpHnmuuHktb-pVF9__pJz_O9L7aHeN8cvedyi1z5qwfIAdRqThySu-S66foI3ixsniUT7bHthHZgmHwuZBChMovXES7IOzvbryO3soeno5nk4xtFwAS9cFlFhKShooVlhiZCSGsmsJgA5uDzFZqXLtKQkRWEp57p0gYNCGFMaJXNOczeXHaL2crWEI5S434iQGWMEVJFzQSTnXJHSaEkUuBrnGHV9KObvtabGPEbh5O_pU7Rbn-L4Ntkz1K7WGzh3yUClLsJX8AXcS6xW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsDER4v4xgMjbh0njhPWiqqFpkKilbpVjn1GFahFVcrAr8d2kiIQA1vsJckpzruz772H0I1kIjEqlcQwCiSSYNdcrhUJVBznLNJBYFyhmI3jwTR6mPFZA91uuTAA4JvPoOMu_Vm-XqmN2yrrOp4pd9TxHYv7PCjZWtsdFScOLioxKT8WtvTwlnksiCmxxdisZnaFwkJTLfhUjcOaUkPT7rCXjXqlmGV1zx_mKx57-vsoq5-6bDl57WyKvKM-fwk6_ve1DlD7m-WHn7b4dYgasDxC-7XNA65WfQvdPcObIbWXBFYu314YC6f4YyGxB0NcmU-84LX3tl9X7M42mvbvJ70BqSwXyMLmEQWRKQOVqpgbmkrJtIyNogAR2EzFhInNtaSknBsmhEps4ICnWic6l5FgkZ0Lj1FzuVrCCcL2R5LKMI4p5DwSKZVCiJwmWkmag61yTlHLhWL-XqpqzKsonP09fY12B5NsNB8Nx4_naK8803FNsxeoWaw3cGlTgyK_8l_EFxMzr58
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Self-training+classifier+via+local+learning+regularization&rft.au=Yong+Cheng&rft.au=Ruilian+Zhao&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=1&rft.spage=454&rft.epage=459&rft_id=info:doi/10.1109%2FICMLC.2009.5212507&rft.externalDocID=5212507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon