Self-training classifier via local learning regularization
Self-training learning is one of the most important semi-supervised learning paradigms in which a learner keeps on classifying the unlabeled examples and retaining the most confident examples to the training set. With the increasing training set, it is possible to enhance the classification performa...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 1; pp. 454 - 459 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self-training learning is one of the most important semi-supervised learning paradigms in which a learner keeps on classifying the unlabeled examples and retaining the most confident examples to the training set. With the increasing training set, it is possible to enhance the classification performance on unseen data. However, sometimes the classifier misclassifies some unlabeled examples and keeps them in the training set, which worse the classification performance. In this paper, we present a novel method based on local consistency to eliminate the noises. According the manifold assumption, an unlabeled example expects to join the training set if its label given by classifier should be consistent with the local neighborhood in the training set on the manifold. We test the new method on several data sets from synthetic and real-world data from UCI, the empirical result indicates the proposed approach is effective and reliable. |
---|---|
AbstractList | Self-training learning is one of the most important semi-supervised learning paradigms in which a learner keeps on classifying the unlabeled examples and retaining the most confident examples to the training set. With the increasing training set, it is possible to enhance the classification performance on unseen data. However, sometimes the classifier misclassifies some unlabeled examples and keeps them in the training set, which worse the classification performance. In this paper, we present a novel method based on local consistency to eliminate the noises. According the manifold assumption, an unlabeled example expects to join the training set if its label given by classifier should be consistent with the local neighborhood in the training set on the manifold. We test the new method on several data sets from synthetic and real-world data from UCI, the empirical result indicates the proposed approach is effective and reliable. |
Author | Ruilian Zhao Yong Cheng |
Author_xml | – sequence: 1 surname: Yong Cheng fullname: Yong Cheng organization: Dept. of Comput. Sci., Beijing Univ. of Chem. Technol., Beijing, China – sequence: 2 surname: Ruilian Zhao fullname: Ruilian Zhao organization: Dept. of Comput. Sci., Beijing Univ. of Chem. Technol., Beijing, China |
BookMark | eNo1UNFKw0AQPLEF29of0Jf8QOre3l0u55sEq4WIDyr4VtbLppycqVyioF9v0Dovw8wwCztzMen2HQtxJmElJbiLTXVXVysEcCuDEg3YIzGXGrVWFhQei6Wz5b9GNREzlAXkUqnnqZiPvdJJ6QyeiGXfv8IIbdAWaiYuHzi2-ZAodKHbZT5S34c2cMo-A2Vx7ylmkSn9pol3H5FS-KYh7LtTMW0p9rw88EI8ra8fq9u8vr_ZVFd1HqQ1Q04O2TtfmBYcETZUtB6YNcNoqbKQQATGtGitL8cP2LimKZsX0hb16KmFOP-7G5h5-57CG6Wv7WEH9QPe3E7v |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212507 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 459 |
ExternalDocumentID | 5212507 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-a92ec9c65f09aa2da6fc0ee4e065f38610aa055f277c8244e59dd8dba472477c3 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:21:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-a92ec9c65f09aa2da6fc0ee4e065f38610aa055f277c8244e59dd8dba472477c3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5212507 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.4194896 |
Snippet | Self-training learning is one of the most important semi-supervised learning paradigms in which a learner keeps on classifying the unlabeled examples and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 454 |
SubjectTerms | Cybernetics Machine learning Manifold Learning Self-training Semi-supervised Learning |
Title | Self-training classifier via local learning regularization |
URI | https://ieeexplore.ieee.org/document/5212507 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbGRhx6ziJHbNWVAVRhASVulX-OKMK1KIqZeDXYztOEYiBLfaS5BTn3dn33kPoUlJeWi0ktpQAziW4NaeMxqlmTNHcpKn1heLkgY2n-d2smLXQ1ZYLAwCh-Qz6_jKc5ZuV3vitsoHnmRaeOr7jCreaq7XdT_HS4DxKSYUxd4VHMMyjKSPYlWKzhteVcQdMjdxTHGcNoYaIwe1wcj-spSzjHX9YrwTkGXXQpHnmuuHktb-pVF9__pJz_O9L7aHeN8cvedyi1z5qwfIAdRqThySu-S66foI3ixsniUT7bHthHZgmHwuZBChMovXES7IOzvbryO3soeno5nk4xtFwAS9cFlFhKShooVlhiZCSGsmsJgA5uDzFZqXLtKQkRWEp57p0gYNCGFMaJXNOczeXHaL2crWEI5S434iQGWMEVJFzQSTnXJHSaEkUuBrnGHV9KObvtabGPEbh5O_pU7Rbn-L4Ntkz1K7WGzh3yUClLsJX8AXcS6xW |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsDER4v4xgMjbh0njhPWiqqFpkKilbpVjn1GFahFVcrAr8d2kiIQA1vsJckpzruz772H0I1kIjEqlcQwCiSSYNdcrhUJVBznLNJBYFyhmI3jwTR6mPFZA91uuTAA4JvPoOMu_Vm-XqmN2yrrOp4pd9TxHYv7PCjZWtsdFScOLioxKT8WtvTwlnksiCmxxdisZnaFwkJTLfhUjcOaUkPT7rCXjXqlmGV1zx_mKx57-vsoq5-6bDl57WyKvKM-fwk6_ve1DlD7m-WHn7b4dYgasDxC-7XNA65WfQvdPcObIbWXBFYu314YC6f4YyGxB0NcmU-84LX3tl9X7M42mvbvJ70BqSwXyMLmEQWRKQOVqpgbmkrJtIyNogAR2EzFhInNtaSknBsmhEps4ICnWic6l5FgkZ0Lj1FzuVrCCcL2R5LKMI4p5DwSKZVCiJwmWkmag61yTlHLhWL-XqpqzKsonP09fY12B5NsNB8Nx4_naK8803FNsxeoWaw3cGlTgyK_8l_EFxMzr58 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Self-training+classifier+via+local+learning+regularization&rft.au=Yong+Cheng&rft.au=Ruilian+Zhao&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=1&rft.spage=454&rft.epage=459&rft_id=info:doi/10.1109%2FICMLC.2009.5212507&rft.externalDocID=5212507 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |