Interpretable Convolutional Neural Networks
This paper proposes a method to modify a traditional convolutional neural network (CNN) into an interpretable CNN, in order to clarify knowledge representations in high conv-layers of the CNN. In an interpretable CNN, each filter in a high conv-layer represents a specific object part. Our interpreta...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 8827 - 8836 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a method to modify a traditional convolutional neural network (CNN) into an interpretable CNN, in order to clarify knowledge representations in high conv-layers of the CNN. In an interpretable CNN, each filter in a high conv-layer represents a specific object part. Our interpretable CNNs use the same training data as ordinary CNNs without a need for any annotations of object parts or textures for supervision. The interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. We can apply our method to different types of CNNs with various structures. The explicit knowledge representation in an interpretable CNN can help people understand the logic inside a CNN, i.e. what patterns are memorized by the CNN for prediction. Experiments have shown that filters in an interpretable CNN are more semantically meaningful than those in a traditional CNN. The code is available at https://github.com/zqs1022/interpretableCNN. |
---|---|
AbstractList | This paper proposes a method to modify a traditional convolutional neural network (CNN) into an interpretable CNN, in order to clarify knowledge representations in high conv-layers of the CNN. In an interpretable CNN, each filter in a high conv-layer represents a specific object part. Our interpretable CNNs use the same training data as ordinary CNNs without a need for any annotations of object parts or textures for supervision. The interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. We can apply our method to different types of CNNs with various structures. The explicit knowledge representation in an interpretable CNN can help people understand the logic inside a CNN, i.e. what patterns are memorized by the CNN for prediction. Experiments have shown that filters in an interpretable CNN are more semantically meaningful than those in a traditional CNN. The code is available at https://github.com/zqs1022/interpretableCNN. |
Author | Zhang, Quanshi Zhu, Song-Chun Wu, Ying Nian |
Author_xml | – sequence: 1 givenname: Quanshi surname: Zhang fullname: Zhang, Quanshi – sequence: 2 givenname: Ying Nian surname: Wu fullname: Wu, Ying Nian – sequence: 3 givenname: Song-Chun surname: Zhu fullname: Zhu, Song-Chun |
BookMark | eNotj0FLwzAYQKMoOGfPHrzsLq3flzTJl6MUp4OhIup1pOkXqNZ2pJ3iv3eol_duD96pOOqHnoU4RygQwV1Vr49PhQSkAsBJOBCZs4RakTGlBHcoZghG5cahOxHZOL4BgDSkqNQzcbnqJ07bxJOvO15UQ_85dLupHXrfLe55l341fQ3pfTwTx9F3I2f_nouX5c1zdZevH25X1fU6b9HqKffGBRdtTTZIieRtjORUJNij9ropZdMYraMxrLguA5QBQxMVxkCNVlLNxcVft2XmzTa1Hz59b0hbt59UP4nxRPY |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00920 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 8836 |
ExternalDocumentID | 8579018 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-a69c9f7b87c2218a7ff893f8093fba5d42dd655f66e3eb4c04c1cdf31fc8d5323 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-a69c9f7b87c2218a7ff893f8093fba5d42dd655f66e3eb4c04c1cdf31fc8d5323 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8579018 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.5962012 |
Snippet | This paper proposes a method to modify a traditional convolutional neural network (CNN) into an interpretable CNN, in order to clarify knowledge... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 8827 |
SubjectTerms | Convolutional neural networks Entropy Integrated circuits Semantics Task analysis Training Visualization |
Title | Interpretable Convolutional Neural Networks |
URI | https://ieeexplore.ieee.org/document/8579018 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anjxVbcU3e_Cm2-5unnsuliIoRaz0VvIEsbRidz34602ysRXx4CXJBhaS2WS_yeSbGYArkWUaYS1Swizy1iqbCoptKjHNkOCFsjawLR7oZIbv5mTegputL4wxJpDPzMA3w12-Xqvam8qGnDAHX7wNbXdwa3y1tvaUgnLE4w2Zf0buZENLHqP55Fk5HD1PHz2Xy5MnS5_f-0c6lYAm4y7cf4-jIZG8DupKDtTnrxCN_x3oPvR3fnvJdItIB9Ayq0PoRkUzidt404PrHdVQLk3i3v6IK1AsEx-uI1SBH77pw2x8-zSapDFrQvriVIHKibpUpWWSM1U4_BbMWqeTWJ65QgqicaE1JcRSapCRWGVY5UpblFvFNUEFOoLOar0yx5AwJ0KbI5sbkWPt_m1ICkmxpFoizpg4gZ6f--KtCYyxiNM-_bv7DPa89Bue1Tl0qvfaXDhEr-Rl-JRfAJefyg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3PXjTQtt99kwkqECIAcON7DMxEDBSPPjr3W0rGOPBS7fdpMnszm6_6ew3MwA3Ioo0wlqEhFnkvVU2FBTbUGIaIcETZW3OthjQ7hg_TsikAnebWBhjTE4-M01_m5_l66Vae1dZixPm4IvvwK7DfRIX0Vobj0pCOeLlGZl_Ru7fhqa8zOcTR2mr_TJ89mwuT59MfYXvHwVVcjzp1KD_LUlBI5k115lsqs9fSRr_K-oBNLaRe8Fwg0mHUDGLI6iVpmZQbuRVHW63ZEM5N4F7-6Ncg2Ie-IQdeZMzxFcNGHfuR-1uWNZNCF-dMZC5yU5VapnkTCUOwQWz1lkllkfuIgXRONGaEmIpNchIrCKsYqUtiq3imqAEHUN1sVyYEwiYm0IbIxsbEWPtvm5ICkmxpFoizpg4hbof-_StSI0xLYd99nf3Nex1R_3etPcweDqHfa-JgnV1AdXsfW0uHb5n8ipX6xeKWqMT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Interpretable+Convolutional+Neural+Networks&rft.au=Zhang%2C+Quanshi&rft.au=Wu%2C+Ying+Nian&rft.au=Zhu%2C+Song-Chun&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=8827&rft.epage=8836&rft_id=info:doi/10.1109%2FCVPR.2018.00920&rft.externalDocID=8579018 |