Interpretable Convolutional Neural Networks

This paper proposes a method to modify a traditional convolutional neural network (CNN) into an interpretable CNN, in order to clarify knowledge representations in high conv-layers of the CNN. In an interpretable CNN, each filter in a high conv-layer represents a specific object part. Our interpreta...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 8827 - 8836
Main Authors Zhang, Quanshi, Wu, Ying Nian, Zhu, Song-Chun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a method to modify a traditional convolutional neural network (CNN) into an interpretable CNN, in order to clarify knowledge representations in high conv-layers of the CNN. In an interpretable CNN, each filter in a high conv-layer represents a specific object part. Our interpretable CNNs use the same training data as ordinary CNNs without a need for any annotations of object parts or textures for supervision. The interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. We can apply our method to different types of CNNs with various structures. The explicit knowledge representation in an interpretable CNN can help people understand the logic inside a CNN, i.e. what patterns are memorized by the CNN for prediction. Experiments have shown that filters in an interpretable CNN are more semantically meaningful than those in a traditional CNN. The code is available at https://github.com/zqs1022/interpretableCNN.
AbstractList This paper proposes a method to modify a traditional convolutional neural network (CNN) into an interpretable CNN, in order to clarify knowledge representations in high conv-layers of the CNN. In an interpretable CNN, each filter in a high conv-layer represents a specific object part. Our interpretable CNNs use the same training data as ordinary CNNs without a need for any annotations of object parts or textures for supervision. The interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. We can apply our method to different types of CNNs with various structures. The explicit knowledge representation in an interpretable CNN can help people understand the logic inside a CNN, i.e. what patterns are memorized by the CNN for prediction. Experiments have shown that filters in an interpretable CNN are more semantically meaningful than those in a traditional CNN. The code is available at https://github.com/zqs1022/interpretableCNN.
Author Zhang, Quanshi
Zhu, Song-Chun
Wu, Ying Nian
Author_xml – sequence: 1
  givenname: Quanshi
  surname: Zhang
  fullname: Zhang, Quanshi
– sequence: 2
  givenname: Ying Nian
  surname: Wu
  fullname: Wu, Ying Nian
– sequence: 3
  givenname: Song-Chun
  surname: Zhu
  fullname: Zhu, Song-Chun
BookMark eNotj0FLwzAYQKMoOGfPHrzsLq3flzTJl6MUp4OhIup1pOkXqNZ2pJ3iv3eol_duD96pOOqHnoU4RygQwV1Vr49PhQSkAsBJOBCZs4RakTGlBHcoZghG5cahOxHZOL4BgDSkqNQzcbnqJ07bxJOvO15UQ_85dLupHXrfLe55l341fQ3pfTwTx9F3I2f_nouX5c1zdZevH25X1fU6b9HqKffGBRdtTTZIieRtjORUJNij9ropZdMYraMxrLguA5QBQxMVxkCNVlLNxcVft2XmzTa1Hz59b0hbt59UP4nxRPY
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00920
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 8836
ExternalDocumentID 8579018
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-a69c9f7b87c2218a7ff893f8093fba5d42dd655f66e3eb4c04c1cdf31fc8d5323
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a69c9f7b87c2218a7ff893f8093fba5d42dd655f66e3eb4c04c1cdf31fc8d5323
PageCount 10
ParticipantIDs ieee_primary_8579018
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5962012
Snippet This paper proposes a method to modify a traditional convolutional neural network (CNN) into an interpretable CNN, in order to clarify knowledge...
SourceID ieee
SourceType Publisher
StartPage 8827
SubjectTerms Convolutional neural networks
Entropy
Integrated circuits
Semantics
Task analysis
Training
Visualization
Title Interpretable Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/8579018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anjxVbcU3e_Cm2-5unnsuliIoRaz0VvIEsbRidz34602ysRXx4CXJBhaS2WS_yeSbGYArkWUaYS1Swizy1iqbCoptKjHNkOCFsjawLR7oZIbv5mTegputL4wxJpDPzMA3w12-Xqvam8qGnDAHX7wNbXdwa3y1tvaUgnLE4w2Zf0buZENLHqP55Fk5HD1PHz2Xy5MnS5_f-0c6lYAm4y7cf4-jIZG8DupKDtTnrxCN_x3oPvR3fnvJdItIB9Ayq0PoRkUzidt404PrHdVQLk3i3v6IK1AsEx-uI1SBH77pw2x8-zSapDFrQvriVIHKibpUpWWSM1U4_BbMWqeTWJ65QgqicaE1JcRSapCRWGVY5UpblFvFNUEFOoLOar0yx5AwJ0KbI5sbkWPt_m1ICkmxpFoizpg4gZ6f--KtCYyxiNM-_bv7DPa89Bue1Tl0qvfaXDhEr-Rl-JRfAJefyg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3PXjTQtt99kwkqECIAcON7DMxEDBSPPjr3W0rGOPBS7fdpMnszm6_6ew3MwA3Ioo0wlqEhFnkvVU2FBTbUGIaIcETZW3OthjQ7hg_TsikAnebWBhjTE4-M01_m5_l66Vae1dZixPm4IvvwK7DfRIX0Vobj0pCOeLlGZl_Ru7fhqa8zOcTR2mr_TJ89mwuT59MfYXvHwVVcjzp1KD_LUlBI5k115lsqs9fSRr_K-oBNLaRe8Fwg0mHUDGLI6iVpmZQbuRVHW63ZEM5N4F7-6Ncg2Ie-IQdeZMzxFcNGHfuR-1uWNZNCF-dMZC5yU5VapnkTCUOwQWz1lkllkfuIgXRONGaEmIpNchIrCKsYqUtiq3imqAEHUN1sVyYEwiYm0IbIxsbEWPtvm5ICkmxpFoizpg4hbof-_StSI0xLYd99nf3Nex1R_3etPcweDqHfa-JgnV1AdXsfW0uHb5n8ipX6xeKWqMT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Interpretable+Convolutional+Neural+Networks&rft.au=Zhang%2C+Quanshi&rft.au=Wu%2C+Ying+Nian&rft.au=Zhu%2C+Song-Chun&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=8827&rft.epage=8836&rft_id=info:doi/10.1109%2FCVPR.2018.00920&rft.externalDocID=8579018