Improve multi-baseline InSAR parameter retrieval by semantic information from optical images

One of the most unique benefits of multi-baseline synthetic aperture radar interferometry (InSAR) is the long-term monitoring of subtle ground deformation over large areas. Most state-of-the-art algorithms for retrieving such parameter are based on single pixels, e.g. Permanent Scatterer InSAR [1] o...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Geoscience and Remote Sensing Symposium proceedings pp. 5478 - 5481
Main Authors Jian Kang, Yuanyuan Wang, Korner, Marco, Xiao Xiang Zhu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the most unique benefits of multi-baseline synthetic aperture radar interferometry (InSAR) is the long-term monitoring of subtle ground deformation over large areas. Most state-of-the-art algorithms for retrieving such parameter are based on single pixels, e.g. Permanent Scatterer InSAR [1] or clusters of ergodic pixels with stationary phases e.g. SqueeSAR [2]. None of the studies has addressed the joint inversion in an object level, where the true interferometric phase may be varying subject to topography and deformation. Recently, one study has investigated SAR and optical data fusion in order to make use of the rich semantic information from optical images [3]. Based on that work, we seek to investigate the possibility of an object-level multi-baseline InSAR deformation reconstruction given the semantic information from the corresponding optical images. In this paper, we introduced the tensor model for the multi-baseline InSAR inversion and proposed a maximum a posteriori estimator of the deformation parameters by including a spatial prior function in the objective function. Substantial improvement in the deformation estimation is observed in the experiments using both simulated and the real SAR data.
AbstractList One of the most unique benefits of multi-baseline synthetic aperture radar interferometry (InSAR) is the long-term monitoring of subtle ground deformation over large areas. Most state-of-the-art algorithms for retrieving such parameter are based on single pixels, e.g. Permanent Scatterer InSAR [1] or clusters of ergodic pixels with stationary phases e.g. SqueeSAR [2]. None of the studies has addressed the joint inversion in an object level, where the true interferometric phase may be varying subject to topography and deformation. Recently, one study has investigated SAR and optical data fusion in order to make use of the rich semantic information from optical images [3]. Based on that work, we seek to investigate the possibility of an object-level multi-baseline InSAR deformation reconstruction given the semantic information from the corresponding optical images. In this paper, we introduced the tensor model for the multi-baseline InSAR inversion and proposed a maximum a posteriori estimator of the deformation parameters by including a spatial prior function in the objective function. Substantial improvement in the deformation estimation is observed in the experiments using both simulated and the real SAR data.
Author Jian Kang
Yuanyuan Wang
Korner, Marco
Xiao Xiang Zhu
Author_xml – sequence: 1
  surname: Jian Kang
  fullname: Jian Kang
– sequence: 2
  surname: Yuanyuan Wang
  fullname: Yuanyuan Wang
– sequence: 3
  givenname: Marco
  surname: Korner
  fullname: Korner, Marco
– sequence: 4
  surname: Xiao Xiang Zhu
  fullname: Xiao Xiang Zhu
BookMark eNotUFFLwzAYjKLgOv0Fe8kf6MzXNE3zOIbOwkDY9E0YX7YvEmnSktbB_r0F93J3HMcdXMbuYheJsQWIJYAwz81mtdvvl4UAvayhqIuyvGEZKGFEaRToWzYrQMlcCyEfWDYMP5OoCyFm7KsJferOxMNvO_rc4kCtj8SbuF_teI8JA42UeKIxeTpjy-2FDxQwjv7IfXRdCjj6LnKXusC7frKnkA_4TcMju3fYDvR05Tn7fH35WL_l2_dNs15tcw9ajTlKJw1gPaFCAGVFDVZZtFafsEQ8GXQkUQurKuO0K6pKQoWG8Ah0OqKcs8V_ryeiQ5-m9XQ5XJ-Qf3r8V0E
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS.2017.8128244
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 1509049517
9781509049516
EISSN 2153-7003
EndPage 5481
ExternalDocumentID 8128244
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-a3f391a8f395a115b081b5babb7da4aad9afe3a70b569f7f266316a9eac1edca3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:38:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a3f391a8f395a115b081b5babb7da4aad9afe3a70b569f7f266316a9eac1edca3
PageCount 4
ParticipantIDs ieee_primary_8128244
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.6422149
Snippet One of the most unique benefits of multi-baseline synthetic aperture radar interferometry (InSAR) is the long-term monitoring of subtle ground deformation over...
SourceID ieee
SourceType Publisher
StartPage 5478
SubjectTerms Bridges
Image reconstruction
Optical imaging
Optical interferometry
Rivers
Strain
Synthetic aperture radar
Title Improve multi-baseline InSAR parameter retrieval by semantic information from optical images
URI https://ieeexplore.ieee.org/document/8128244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB5UKPTUh5bWPthDj01M3CSbPUqpj4KlaAUPBZndbECKUTQe7K_v7iZaWnroJSyBkDCzzDc7-eYbgHtOI6S0LZ1ApJ4TUGYHuVMnjhQyROZxZvqdhy9RfxI8T8NpBR4OvTBKKUs-U65Z2n_5yVJuTamspcEo1nBUhao-uBW9WvuoSzWSeaWqkO_x1qDXGY3HhrrF3PKxH_NTLHx0T2C4f3HBGvlwt7lw5ecvTcb_ftkpNL4b9cjrAYLOoKKyczjq2Wm9uzq8FyUDRSxt0DGIZbJKMsjGnRExqt8Lw4YhaztWS-85InZkoxba2nNJSk1V4zliulDIcmUL32S-0EFo04BJ9-ntse-U4xScuc4RcgdpSrmPsb6GqBNBobMBEQoUgiUYICYcU0W1e0QY8ZSlGrqpHyHXodlXiUR6AbVsmalLIFIkklJURvwraCdRHCSMowxEGAuFwruCurHRbFUoZsxK8zT_vn0Nx8ZPBQn2Bmr5eqtuNdTn4s76-AvaV6v_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB6spbSnPrT03T302GjiJtnsUUp9tCrFB3goyGyyASlG0Xiwv767m2hp6aGXEAIhYSbMN0y-7xuAB059pLQWWq6IbculzCxyp1bgS2SIzOZM6527Pb81cl_G3rgAjzstjJTSkM9kRZ-af_nRPFzrUVlVgVGg4GgP9hXue06m1trWXaqwzM59hRybV9vNen8w0OQtVslv_LFBxQBI4xi620dnvJGPyjoVlfDzlyvjf9_tBMrfUj3ytgOhUyjI5AwOmmZf76YE79nQQBJDHLQ0Zum-krSTQb1PtO_3TPNhyNIs1lJfHREbspIzFe9pSHJXVZ07onUoZL4wo28ynakytCrDqPE8fGpZ-UIFa6q6hNRCGlPuYKCOHqpWUKh-QHgChWARuogRx1hSlSDh-TxmsQJv6vjIVXF2ZBQiPYdiMk_kBZBQRCGlKLX9l1uL_MCNGMfQFV4gJAr7Eko6RpNF5pkxycNz9fflezhsDbudSafde72GI52zjBJ7A8V0uZa3CvhTcWfy_QX-fq9I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Improve+multi-baseline+InSAR+parameter+retrieval+by+semantic+information+from+optical+images&rft.au=Jian+Kang&rft.au=Yuanyuan+Wang&rft.au=Korner%2C+Marco&rft.au=Xiao+Xiang+Zhu&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=5478&rft.epage=5481&rft_id=info:doi/10.1109%2FIGARSS.2017.8128244&rft.externalDocID=8128244