Improve multi-baseline InSAR parameter retrieval by semantic information from optical images
One of the most unique benefits of multi-baseline synthetic aperture radar interferometry (InSAR) is the long-term monitoring of subtle ground deformation over large areas. Most state-of-the-art algorithms for retrieving such parameter are based on single pixels, e.g. Permanent Scatterer InSAR [1] o...
Saved in:
Published in | IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 5478 - 5481 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the most unique benefits of multi-baseline synthetic aperture radar interferometry (InSAR) is the long-term monitoring of subtle ground deformation over large areas. Most state-of-the-art algorithms for retrieving such parameter are based on single pixels, e.g. Permanent Scatterer InSAR [1] or clusters of ergodic pixels with stationary phases e.g. SqueeSAR [2]. None of the studies has addressed the joint inversion in an object level, where the true interferometric phase may be varying subject to topography and deformation. Recently, one study has investigated SAR and optical data fusion in order to make use of the rich semantic information from optical images [3]. Based on that work, we seek to investigate the possibility of an object-level multi-baseline InSAR deformation reconstruction given the semantic information from the corresponding optical images. In this paper, we introduced the tensor model for the multi-baseline InSAR inversion and proposed a maximum a posteriori estimator of the deformation parameters by including a spatial prior function in the objective function. Substantial improvement in the deformation estimation is observed in the experiments using both simulated and the real SAR data. |
---|---|
AbstractList | One of the most unique benefits of multi-baseline synthetic aperture radar interferometry (InSAR) is the long-term monitoring of subtle ground deformation over large areas. Most state-of-the-art algorithms for retrieving such parameter are based on single pixels, e.g. Permanent Scatterer InSAR [1] or clusters of ergodic pixels with stationary phases e.g. SqueeSAR [2]. None of the studies has addressed the joint inversion in an object level, where the true interferometric phase may be varying subject to topography and deformation. Recently, one study has investigated SAR and optical data fusion in order to make use of the rich semantic information from optical images [3]. Based on that work, we seek to investigate the possibility of an object-level multi-baseline InSAR deformation reconstruction given the semantic information from the corresponding optical images. In this paper, we introduced the tensor model for the multi-baseline InSAR inversion and proposed a maximum a posteriori estimator of the deformation parameters by including a spatial prior function in the objective function. Substantial improvement in the deformation estimation is observed in the experiments using both simulated and the real SAR data. |
Author | Jian Kang Yuanyuan Wang Korner, Marco Xiao Xiang Zhu |
Author_xml | – sequence: 1 surname: Jian Kang fullname: Jian Kang – sequence: 2 surname: Yuanyuan Wang fullname: Yuanyuan Wang – sequence: 3 givenname: Marco surname: Korner fullname: Korner, Marco – sequence: 4 surname: Xiao Xiang Zhu fullname: Xiao Xiang Zhu |
BookMark | eNotUFFLwzAYjKLgOv0Fe8kf6MzXNE3zOIbOwkDY9E0YX7YvEmnSktbB_r0F93J3HMcdXMbuYheJsQWIJYAwz81mtdvvl4UAvayhqIuyvGEZKGFEaRToWzYrQMlcCyEfWDYMP5OoCyFm7KsJferOxMNvO_rc4kCtj8SbuF_teI8JA42UeKIxeTpjy-2FDxQwjv7IfXRdCjj6LnKXusC7frKnkA_4TcMju3fYDvR05Tn7fH35WL_l2_dNs15tcw9ajTlKJw1gPaFCAGVFDVZZtFafsEQ8GXQkUQurKuO0K6pKQoWG8Ah0OqKcs8V_ryeiQ5-m9XQ5XJ-Qf3r8V0E |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS.2017.8128244 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 1509049517 9781509049516 |
EISSN | 2153-7003 |
EndPage | 5481 |
ExternalDocumentID | 8128244 |
Genre | orig-research |
GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-a3f391a8f395a115b081b5babb7da4aad9afe3a70b569f7f266316a9eac1edca3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:38:49 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-a3f391a8f395a115b081b5babb7da4aad9afe3a70b569f7f266316a9eac1edca3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8128244 |
PublicationCentury | 2000 |
PublicationDate | 2017-July |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationTitle | IEEE International Geoscience and Remote Sensing Symposium proceedings |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 1.6422149 |
Snippet | One of the most unique benefits of multi-baseline synthetic aperture radar interferometry (InSAR) is the long-term monitoring of subtle ground deformation over... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 5478 |
SubjectTerms | Bridges Image reconstruction Optical imaging Optical interferometry Rivers Strain Synthetic aperture radar |
Title | Improve multi-baseline InSAR parameter retrieval by semantic information from optical images |
URI | https://ieeexplore.ieee.org/document/8128244 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB5UKPTUh5bWPthDj01M3CSbPUqpj4KlaAUPBZndbECKUTQe7K_v7iZaWnroJSyBkDCzzDc7-eYbgHtOI6S0LZ1ApJ4TUGYHuVMnjhQyROZxZvqdhy9RfxI8T8NpBR4OvTBKKUs-U65Z2n_5yVJuTamspcEo1nBUhao-uBW9WvuoSzWSeaWqkO_x1qDXGY3HhrrF3PKxH_NTLHx0T2C4f3HBGvlwt7lw5ecvTcb_ftkpNL4b9cjrAYLOoKKyczjq2Wm9uzq8FyUDRSxt0DGIZbJKMsjGnRExqt8Lw4YhaztWS-85InZkoxba2nNJSk1V4zliulDIcmUL32S-0EFo04BJ9-ntse-U4xScuc4RcgdpSrmPsb6GqBNBobMBEQoUgiUYICYcU0W1e0QY8ZSlGrqpHyHXodlXiUR6AbVsmalLIFIkklJURvwraCdRHCSMowxEGAuFwruCurHRbFUoZsxK8zT_vn0Nx8ZPBQn2Bmr5eqtuNdTn4s76-AvaV6v_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB6spbSnPrT03T302GjiJtnsUUp9tCrFB3goyGyyASlG0Xiwv767m2hp6aGXEAIhYSbMN0y-7xuAB059pLQWWq6IbculzCxyp1bgS2SIzOZM6527Pb81cl_G3rgAjzstjJTSkM9kRZ-af_nRPFzrUVlVgVGg4GgP9hXue06m1trWXaqwzM59hRybV9vNen8w0OQtVslv_LFBxQBI4xi620dnvJGPyjoVlfDzlyvjf9_tBMrfUj3ytgOhUyjI5AwOmmZf76YE79nQQBJDHLQ0Zum-krSTQb1PtO_3TPNhyNIs1lJfHREbspIzFe9pSHJXVZ07onUoZL4wo28ynakytCrDqPE8fGpZ-UIFa6q6hNRCGlPuYKCOHqpWUKh-QHgChWARuogRx1hSlSDh-TxmsQJv6vjIVXF2ZBQiPYdiMk_kBZBQRCGlKLX9l1uL_MCNGMfQFV4gJAr7Eko6RpNF5pkxycNz9fflezhsDbudSafde72GI52zjBJ7A8V0uZa3CvhTcWfy_QX-fq9I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Improve+multi-baseline+InSAR+parameter+retrieval+by+semantic+information+from+optical+images&rft.au=Jian+Kang&rft.au=Yuanyuan+Wang&rft.au=Korner%2C+Marco&rft.au=Xiao+Xiang+Zhu&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=5478&rft.epage=5481&rft_id=info:doi/10.1109%2FIGARSS.2017.8128244&rft.externalDocID=8128244 |