Rough set model based on possibility measure

Rough sets theory (RS) is a new tool for processing fuzzy and uncertain knowledge, and has already been applied to many areas successfully. In this paper, by analyzing the basic characteristic of rough set, for the deficiency that the existing rough set model can't effectively solve data reduct...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 2657 - 2662
Main Authors Fa-Chao Li, Li-Na An
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rough sets theory (RS) is a new tool for processing fuzzy and uncertain knowledge, and has already been applied to many areas successfully. In this paper, by analyzing the basic characteristic of rough set, for the deficiency that the existing rough set model can't effectively solve data reduction and knowledge discovery with possibility feature, we propose rough sets model based on possibility measure (denoted by BP-RS for short), then we analyze the effectiveness of model through an example. The result indicates BP-RS not only have the advantages of classical rough set, but also it can solve effectively information processing problem with the possibility characteristics, and can be widely used in many field such as data mining, evidence theory, artificial intelligence and so on.
AbstractList Rough sets theory (RS) is a new tool for processing fuzzy and uncertain knowledge, and has already been applied to many areas successfully. In this paper, by analyzing the basic characteristic of rough set, for the deficiency that the existing rough set model can't effectively solve data reduction and knowledge discovery with possibility feature, we propose rough sets model based on possibility measure (denoted by BP-RS for short), then we analyze the effectiveness of model through an example. The result indicates BP-RS not only have the advantages of classical rough set, but also it can solve effectively information processing problem with the possibility characteristics, and can be widely used in many field such as data mining, evidence theory, artificial intelligence and so on.
Author Fa-Chao Li
Li-Na An
Author_xml – sequence: 1
  surname: Fa-Chao Li
  fullname: Fa-Chao Li
  organization: Coll. of Econ. & Manage., Hebei Univ. of Sci. & Technol., Shijiazhuang, China
– sequence: 2
  surname: Li-Na An
  fullname: Li-Na An
BookMark eNo1T81Kw0AYXLEFm5oX0EsewMT9dr_dzR4lWC1EBFHwVjbZrxrJT8mmh769AetcZoZhBiZii37oibEb4BkAt_fb4qUsMsG5zZQAoVFdsAhQIErDpbhksTX5vxdywVYCNE9Bys8li-ZebgGsElcsDuGHz0AljJYrdvc2HL--k0BT0g2e2qRygXwy9MlhCKGpmraZTklHLhxHumbLvWsDxWdes4_N43vxnJavT9vioUwbMGpKnTQWjdaS-xo9oCLpvPCcg6nkLLlHq_bGzbGuidBpJI91Djafz2El1-z2b7chot1hbDo3nnbn5_IXdsZItQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212645
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 2662
ExternalDocumentID 5212645
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-a379476630dc4d145e3ad2d0017b33ad0d495f7a0dc6cee4a64ed4c81982124b3
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:20:37 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a379476630dc4d145e3ad2d0017b33ad0d495f7a0dc6cee4a64ed4c81982124b3
PageCount 6
ParticipantIDs ieee_primary_5212645
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4197218
Snippet Rough sets theory (RS) is a new tool for processing fuzzy and uncertain knowledge, and has already been applied to many areas successfully. In this paper, by...
SourceID ieee
SourceType Publisher
StartPage 2657
SubjectTerms Approximate operators
Artificial intelligence
Educational institutions
Evidence theory
Fuzzy set theory
Information processing
Machine learning
Pattern recognition
Possibility distribution
Possibility measures
Rough set
Rough sets
Roughness
Set theory
Uncertainty
Title Rough set model based on possibility measure
URI https://ieeexplore.ieee.org/document/5212645
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21TEwFWsS3PDDWrVPbSTpXVAVRhBCVulWO7UgIkVQ0HeDXc3acIhADm50MOcty7sP33gO4llwKa9OYKuarVbmmKlaGShNpNY5ypb0YzPwhni3E3VIuW9DfYWGstb75zA7c0N_lm1JvXals6HCmsZBtaGPiVmO1dvUURw2eBCopP08w8fCCeaMoZhRTsWWD6-IJOqaG7inMeQOoYePh7WR-P6mpLMMXf0iveM8z7cC8sbluOHkdbKtsoD9_0Tn-d1EH0PvG-JHHnfc6hJYtjqDTiDyQcOa70H9yOj5kYyviVXOI83uGlAVZl5vQW_tB3upSYw8W05vnyYwGiQX6gnFDRRXH85hg1MGMFiYS0nJlRsb5rozjkBlMoPJE4esYDRIqFtYIjWFEimaLjB_DXlEW9gSIzLnF3CU1joFO5mzMUmPwT5pYpjOZ56fQdYtfrWsWjVVY99nfj89hv763cY2xF7BXvW_tJbr_Krvy-_4FNh2mNQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cEjg0LbbZyJBJQRYyDhRrq2S4xxIzIO-tf72m0YjQdv7XbYa9Lu_ej7vg_gTjDBjQl9T1JXrUqUJ32pPaF7Sg56iVRODCaa-eMFf1iKZQ3aOyyMMcY1n5mOHbq7fJ2prS2VdS3O1OdiD_bR74t-gdbaVVQsOXhQkkm5eYCph5PM6_d86mEytqyQXSxA11QRPpVzVkFq6KA7GUbTYUFmWX7zh_iK8z2jBkSV1UXLyWtnm8cd9fmL0PG_yzqC1jfKjzzt_Ncx1Ex6Ao1K5oGUp74J7Wer5EM2JidON4dYz6dJlpJ1tim7az_IW1FsbMFidD8fjr1SZMF7wcgh9yTDExlg3EG14rrHhWFS97X1XjHDIdWYQiWBxNc-GsSlz43mCgOJEM3mMTuFepql5gyISJjB7CXUloNOJHRAQ63xXxoYqmKRJOfQtItfrQsejVW57ou_H9_CwXgeTVfTyezxEg6LWxzbJnsF9fx9a64xGMjjG7cHvgAf-6l_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Rough+set+model+based+on+possibility+measure&rft.au=Fa-Chao+Li&rft.au=Li-Na+An&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=5&rft.spage=2657&rft.epage=2662&rft_id=info:doi/10.1109%2FICMLC.2009.5212645&rft.externalDocID=5212645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon