Rough set model based on possibility measure
Rough sets theory (RS) is a new tool for processing fuzzy and uncertain knowledge, and has already been applied to many areas successfully. In this paper, by analyzing the basic characteristic of rough set, for the deficiency that the existing rough set model can't effectively solve data reduct...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 2657 - 2662 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rough sets theory (RS) is a new tool for processing fuzzy and uncertain knowledge, and has already been applied to many areas successfully. In this paper, by analyzing the basic characteristic of rough set, for the deficiency that the existing rough set model can't effectively solve data reduction and knowledge discovery with possibility feature, we propose rough sets model based on possibility measure (denoted by BP-RS for short), then we analyze the effectiveness of model through an example. The result indicates BP-RS not only have the advantages of classical rough set, but also it can solve effectively information processing problem with the possibility characteristics, and can be widely used in many field such as data mining, evidence theory, artificial intelligence and so on. |
---|---|
AbstractList | Rough sets theory (RS) is a new tool for processing fuzzy and uncertain knowledge, and has already been applied to many areas successfully. In this paper, by analyzing the basic characteristic of rough set, for the deficiency that the existing rough set model can't effectively solve data reduction and knowledge discovery with possibility feature, we propose rough sets model based on possibility measure (denoted by BP-RS for short), then we analyze the effectiveness of model through an example. The result indicates BP-RS not only have the advantages of classical rough set, but also it can solve effectively information processing problem with the possibility characteristics, and can be widely used in many field such as data mining, evidence theory, artificial intelligence and so on. |
Author | Fa-Chao Li Li-Na An |
Author_xml | – sequence: 1 surname: Fa-Chao Li fullname: Fa-Chao Li organization: Coll. of Econ. & Manage., Hebei Univ. of Sci. & Technol., Shijiazhuang, China – sequence: 2 surname: Li-Na An fullname: Li-Na An |
BookMark | eNo1T81Kw0AYXLEFm5oX0EsewMT9dr_dzR4lWC1EBFHwVjbZrxrJT8mmh769AetcZoZhBiZii37oibEb4BkAt_fb4qUsMsG5zZQAoVFdsAhQIErDpbhksTX5vxdywVYCNE9Bys8li-ZebgGsElcsDuGHz0AljJYrdvc2HL--k0BT0g2e2qRygXwy9MlhCKGpmraZTklHLhxHumbLvWsDxWdes4_N43vxnJavT9vioUwbMGpKnTQWjdaS-xo9oCLpvPCcg6nkLLlHq_bGzbGuidBpJI91Djafz2El1-z2b7chot1hbDo3nnbn5_IXdsZItQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212645 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 2662 |
ExternalDocumentID | 5212645 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-a379476630dc4d145e3ad2d0017b33ad0d495f7a0dc6cee4a64ed4c81982124b3 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:20:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-a379476630dc4d145e3ad2d0017b33ad0d495f7a0dc6cee4a64ed4c81982124b3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5212645 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.4197218 |
Snippet | Rough sets theory (RS) is a new tool for processing fuzzy and uncertain knowledge, and has already been applied to many areas successfully. In this paper, by... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2657 |
SubjectTerms | Approximate operators Artificial intelligence Educational institutions Evidence theory Fuzzy set theory Information processing Machine learning Pattern recognition Possibility distribution Possibility measures Rough set Rough sets Roughness Set theory Uncertainty |
Title | Rough set model based on possibility measure |
URI | https://ieeexplore.ieee.org/document/5212645 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21TEwFWsS3PDDWrVPbSTpXVAVRhBCVulWO7UgIkVQ0HeDXc3acIhADm50MOcty7sP33gO4llwKa9OYKuarVbmmKlaGShNpNY5ypb0YzPwhni3E3VIuW9DfYWGstb75zA7c0N_lm1JvXals6HCmsZBtaGPiVmO1dvUURw2eBCopP08w8fCCeaMoZhRTsWWD6-IJOqaG7inMeQOoYePh7WR-P6mpLMMXf0iveM8z7cC8sbluOHkdbKtsoD9_0Tn-d1EH0PvG-JHHnfc6hJYtjqDTiDyQcOa70H9yOj5kYyviVXOI83uGlAVZl5vQW_tB3upSYw8W05vnyYwGiQX6gnFDRRXH85hg1MGMFiYS0nJlRsb5rozjkBlMoPJE4esYDRIqFtYIjWFEimaLjB_DXlEW9gSIzLnF3CU1joFO5mzMUmPwT5pYpjOZ56fQdYtfrWsWjVVY99nfj89hv763cY2xF7BXvW_tJbr_Krvy-_4FNh2mNQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cEjg0LbbZyJBJQRYyDhRrq2S4xxIzIO-tf72m0YjQdv7XbYa9Lu_ej7vg_gTjDBjQl9T1JXrUqUJ32pPaF7Sg56iVRODCaa-eMFf1iKZQ3aOyyMMcY1n5mOHbq7fJ2prS2VdS3O1OdiD_bR74t-gdbaVVQsOXhQkkm5eYCph5PM6_d86mEytqyQXSxA11QRPpVzVkFq6KA7GUbTYUFmWX7zh_iK8z2jBkSV1UXLyWtnm8cd9fmL0PG_yzqC1jfKjzzt_Ncx1Ex6Ao1K5oGUp74J7Wer5EM2JidON4dYz6dJlpJ1tim7az_IW1FsbMFidD8fjr1SZMF7wcgh9yTDExlg3EG14rrHhWFS97X1XjHDIdWYQiWBxNc-GsSlz43mCgOJEM3mMTuFepql5gyISJjB7CXUloNOJHRAQ63xXxoYqmKRJOfQtItfrQsejVW57ou_H9_CwXgeTVfTyezxEg6LWxzbJnsF9fx9a64xGMjjG7cHvgAf-6l_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Rough+set+model+based+on+possibility+measure&rft.au=Fa-Chao+Li&rft.au=Li-Na+An&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=5&rft.spage=2657&rft.epage=2662&rft_id=info:doi/10.1109%2FICMLC.2009.5212645&rft.externalDocID=5212645 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |