The Study of Electrocardiograph Based on Radial Basis Function Neural Network

In this paper we introduce a set of adaptive signal procedure techniques which could be used. Firstly, we introduce discrete wavelet transform and extract the characteristics of Electrocardiogram (ECG) optimization. Then, we make use of Radial Basis Function (RBF) neural network to achieve the class...

Full description

Saved in:
Bibliographic Details
Published in2010 Third International Symposium on Intelligent Information Technology and Security Informatics pp. 143 - 145
Main Authors Yang Guangying, Chen Yue
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2010
Subjects
Online AccessGet full text
ISBN9781424467303
1424467306
DOI10.1109/IITSI.2010.85

Cover

Abstract In this paper we introduce a set of adaptive signal procedure techniques which could be used. Firstly, we introduce discrete wavelet transform and extract the characteristics of Electrocardiogram (ECG) optimization. Then, we make use of Radial Basis Function (RBF) neural network to achieve the classification of ECG and to compare the performance of their respectively. Among which two types of ECG arrhythmias which obtained from MIT-BIH ECG Arrhythmias database are normal beat and paced beat respectively. The experimental results show that the use of RBF neural network algorithm to classify the 8-dimensional feature vector training under the db2 wavelet performs as the optimal classifier, and the overall classification accuracy rate is more than 90%.
AbstractList In this paper we introduce a set of adaptive signal procedure techniques which could be used. Firstly, we introduce discrete wavelet transform and extract the characteristics of Electrocardiogram (ECG) optimization. Then, we make use of Radial Basis Function (RBF) neural network to achieve the classification of ECG and to compare the performance of their respectively. Among which two types of ECG arrhythmias which obtained from MIT-BIH ECG Arrhythmias database are normal beat and paced beat respectively. The experimental results show that the use of RBF neural network algorithm to classify the 8-dimensional feature vector training under the db2 wavelet performs as the optimal classifier, and the overall classification accuracy rate is more than 90%.
Author Chen Yue
Yang Guangying
Author_xml – sequence: 1
  surname: Yang Guangying
  fullname: Yang Guangying
  email: ygy@tzc.edu.cn
  organization: Sch. of Phys. & Electron. Eng., Taizhou Univ., Taizhou, China
– sequence: 2
  surname: Chen Yue
  fullname: Chen Yue
  organization: Sch. of Phys. & Electron. Eng., Taizhou Univ., Taizhou, China
BookMark eNpNjLtOwzAYRo0ACSgZmVj8Ai3-42tGqFqIVIpEw1z5FmoIceUkqvr2BMHAtxydM3xX6KyNrUfoBsgMgBR3ZVltyllORlf8BGWFVMByxoRklJ7-d0roBcq67oOMYxyUpJfoudp5vOkHd8SxxovG2z5Fq5ML8T3p_Q4_6M47HFv8ql3QzY-HDi-H1vZhrGs_pLGufX-I6fMande66Xz2xwl6Wy6q-dN09fJYzu9X0wCS91NNc02AAXACtgAphLWCWeAWSG400cYbJkwta-EIUC6YZMQKZZyRWilBJ-j29zd477f7FL50Om4541RQoN-WQU-w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IITSI.2010.85
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424467433
1424467438
EndPage 145
ExternalDocumentID 5453631
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-a32a01411501c91766cc64c15c102ba0abeb46bf7f6d013564740c68bdb7a8863
IEDL.DBID RIE
ISBN 9781424467303
1424467306
IngestDate Wed Aug 27 02:27:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a32a01411501c91766cc64c15c102ba0abeb46bf7f6d013564740c68bdb7a8863
PageCount 3
ParticipantIDs ieee_primary_5453631
PublicationCentury 2000
PublicationDate 2010-April
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-April
PublicationDecade 2010
PublicationTitle 2010 Third International Symposium on Intelligent Information Technology and Security Informatics
PublicationTitleAbbrev IITSI
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000451873
Score 1.4818515
Snippet In this paper we introduce a set of adaptive signal procedure techniques which could be used. Firstly, we introduce discrete wavelet transform and extract the...
SourceID ieee
SourceType Publisher
StartPage 143
SubjectTerms Classifier
Discrete wavelet transforms
Electrocardiograph (ECG) Arrhythmias
Electrocardiography
Feedforward neural networks
Frequency
Multi-layer neural network
Neural networks
Pattern recognition
Radial Basis Function (RBF)
Radial basis function networks
Wavelet analysis
Wavelet Transform(WT)
Wavelet transforms
Title The Study of Electrocardiograph Based on Radial Basis Function Neural Network
URI https://ieeexplore.ieee.org/document/5453631
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA21J08qrfhNDh5N293NZrNXpaUVWkRb6K3kE4qyK3Z70F_vzKYfIh68JTmFZJI3JO-9IeRWRMbGUnPGnc4Zt0qxnKucZS6B06QjqVIUCo8nYjjjj_N03iB3Oy2Mc64mn7kONuu_fFuaNT6VdQHtE4Gi6QMIs6DV2r2noE-KzJKtdktA5IqtpdOmn-w9Nruj0fRlFJhdWEb5R2WVGlgGR2S8nVLgk7x21pXumK9fbo3_nfMxae8lfPRpB04npOGKFhlDUFBkDn7S0tN-qIBjakZqbVxN7wHTLC0L-oyWBW_YX67oALAP94-ikweMTgJ1vE1mg_70Ycg29RTYEpKEiqkkVsjrhBwwMjk6QxojuIlSA1mGVj2lneZC-8wLC5lhKnjGe0ZIbXWmpBTJKWkWZeHOCFVcp7HzTnsrueOJtD72KldwtcrMCX5OWrgUi_dgmbHYrMLF38OX5DB8yiMh5oo0q4-1uwasr_RNvcnfyeOmDw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWqMsAEqEW88cCI2yZxHGcFtWqgqRC0UrfKT6kCJQjSAb4e37gPhBjYfD1Zfp0r-5xzEbpmgdIhl5RQI1NCtRAkpSIliYncaZIBFzEIhfMxG07p_SyeNdDNRgtjjKnJZ6YDzfovX5dqCU9lXYf2EQPR9I5r0dirtTYvKuCUwpNord5ibu-ytanTKo62LpvdLJs8Z57bBYWUf9RWqaFlsI_y9aA8o-Sls6xkR3398mv876gPUHsr4sOPG3g6RA1TtFDutgUG7uAnLi3u-xo4quak1tbV-NahmsZlgZ_AtOAV4sUHHjj0gxXE4OXheseePN5G00F_cjckq4oKZOHShIqIKBTA7HRZYKBS8IZUilEVxMrlGVL0hDSSMmkTy7TLDWNGE9pTjEstE8E5i45QsygLc4ywoDIOjTXSak4Njbi2oRWpcJcrTwyjJ6gFUzF_86YZ89UsnP7dfYV2h5N8NB9l44cztOe_6IEec46a1fvSXDjkr-RlveDfshCpXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Third+International+Symposium+on+Intelligent+Information+Technology+and+Security+Informatics&rft.atitle=The+Study+of+Electrocardiograph+Based+on+Radial+Basis+Function+Neural+Network&rft.au=Yang+Guangying&rft.au=Chen+Yue&rft.date=2010-04-01&rft.pub=IEEE&rft.isbn=9781424467303&rft.spage=143&rft.epage=145&rft_id=info:doi/10.1109%2FIITSI.2010.85&rft.externalDocID=5453631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/sc.gif&client=summon&freeimage=true