The Study of Electrocardiograph Based on Radial Basis Function Neural Network
In this paper we introduce a set of adaptive signal procedure techniques which could be used. Firstly, we introduce discrete wavelet transform and extract the characteristics of Electrocardiogram (ECG) optimization. Then, we make use of Radial Basis Function (RBF) neural network to achieve the class...
Saved in:
Published in | 2010 Third International Symposium on Intelligent Information Technology and Security Informatics pp. 143 - 145 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424467303 1424467306 |
DOI | 10.1109/IITSI.2010.85 |
Cover
Abstract | In this paper we introduce a set of adaptive signal procedure techniques which could be used. Firstly, we introduce discrete wavelet transform and extract the characteristics of Electrocardiogram (ECG) optimization. Then, we make use of Radial Basis Function (RBF) neural network to achieve the classification of ECG and to compare the performance of their respectively. Among which two types of ECG arrhythmias which obtained from MIT-BIH ECG Arrhythmias database are normal beat and paced beat respectively. The experimental results show that the use of RBF neural network algorithm to classify the 8-dimensional feature vector training under the db2 wavelet performs as the optimal classifier, and the overall classification accuracy rate is more than 90%. |
---|---|
AbstractList | In this paper we introduce a set of adaptive signal procedure techniques which could be used. Firstly, we introduce discrete wavelet transform and extract the characteristics of Electrocardiogram (ECG) optimization. Then, we make use of Radial Basis Function (RBF) neural network to achieve the classification of ECG and to compare the performance of their respectively. Among which two types of ECG arrhythmias which obtained from MIT-BIH ECG Arrhythmias database are normal beat and paced beat respectively. The experimental results show that the use of RBF neural network algorithm to classify the 8-dimensional feature vector training under the db2 wavelet performs as the optimal classifier, and the overall classification accuracy rate is more than 90%. |
Author | Chen Yue Yang Guangying |
Author_xml | – sequence: 1 surname: Yang Guangying fullname: Yang Guangying email: ygy@tzc.edu.cn organization: Sch. of Phys. & Electron. Eng., Taizhou Univ., Taizhou, China – sequence: 2 surname: Chen Yue fullname: Chen Yue organization: Sch. of Phys. & Electron. Eng., Taizhou Univ., Taizhou, China |
BookMark | eNpNjLtOwzAYRo0ACSgZmVj8Ai3-42tGqFqIVIpEw1z5FmoIceUkqvr2BMHAtxydM3xX6KyNrUfoBsgMgBR3ZVltyllORlf8BGWFVMByxoRklJ7-d0roBcq67oOMYxyUpJfoudp5vOkHd8SxxovG2z5Fq5ML8T3p_Q4_6M47HFv8ql3QzY-HDi-H1vZhrGs_pLGufX-I6fMande66Xz2xwl6Wy6q-dN09fJYzu9X0wCS91NNc02AAXACtgAphLWCWeAWSG400cYbJkwta-EIUC6YZMQKZZyRWilBJ-j29zd477f7FL50Om4541RQoN-WQU-w |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IITSI.2010.85 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781424467433 1424467438 |
EndPage | 145 |
ExternalDocumentID | 5453631 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-a32a01411501c91766cc64c15c102ba0abeb46bf7f6d013564740c68bdb7a8863 |
IEDL.DBID | RIE |
ISBN | 9781424467303 1424467306 |
IngestDate | Wed Aug 27 02:27:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-a32a01411501c91766cc64c15c102ba0abeb46bf7f6d013564740c68bdb7a8863 |
PageCount | 3 |
ParticipantIDs | ieee_primary_5453631 |
PublicationCentury | 2000 |
PublicationDate | 2010-April |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-April |
PublicationDecade | 2010 |
PublicationTitle | 2010 Third International Symposium on Intelligent Information Technology and Security Informatics |
PublicationTitleAbbrev | IITSI |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000451873 |
Score | 1.4818515 |
Snippet | In this paper we introduce a set of adaptive signal procedure techniques which could be used. Firstly, we introduce discrete wavelet transform and extract the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 143 |
SubjectTerms | Classifier Discrete wavelet transforms Electrocardiograph (ECG) Arrhythmias Electrocardiography Feedforward neural networks Frequency Multi-layer neural network Neural networks Pattern recognition Radial Basis Function (RBF) Radial basis function networks Wavelet analysis Wavelet Transform(WT) Wavelet transforms |
Title | The Study of Electrocardiograph Based on Radial Basis Function Neural Network |
URI | https://ieeexplore.ieee.org/document/5453631 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA21J08qrfhNDh5N293NZrNXpaUVWkRb6K3kE4qyK3Z70F_vzKYfIh68JTmFZJI3JO-9IeRWRMbGUnPGnc4Zt0qxnKucZS6B06QjqVIUCo8nYjjjj_N03iB3Oy2Mc64mn7kONuu_fFuaNT6VdQHtE4Gi6QMIs6DV2r2noE-KzJKtdktA5IqtpdOmn-w9Nruj0fRlFJhdWEb5R2WVGlgGR2S8nVLgk7x21pXumK9fbo3_nfMxae8lfPRpB04npOGKFhlDUFBkDn7S0tN-qIBjakZqbVxN7wHTLC0L-oyWBW_YX67oALAP94-ikweMTgJ1vE1mg_70Ycg29RTYEpKEiqkkVsjrhBwwMjk6QxojuIlSA1mGVj2lneZC-8wLC5lhKnjGe0ZIbXWmpBTJKWkWZeHOCFVcp7HzTnsrueOJtD72KldwtcrMCX5OWrgUi_dgmbHYrMLF38OX5DB8yiMh5oo0q4-1uwasr_RNvcnfyeOmDw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWqMsAEqEW88cCI2yZxHGcFtWqgqRC0UrfKT6kCJQjSAb4e37gPhBjYfD1Zfp0r-5xzEbpmgdIhl5RQI1NCtRAkpSIliYncaZIBFzEIhfMxG07p_SyeNdDNRgtjjKnJZ6YDzfovX5dqCU9lXYf2EQPR9I5r0dirtTYvKuCUwpNord5ibu-ytanTKo62LpvdLJs8Z57bBYWUf9RWqaFlsI_y9aA8o-Sls6xkR3398mv876gPUHsr4sOPG3g6RA1TtFDutgUG7uAnLi3u-xo4quak1tbV-NahmsZlgZ_AtOAV4sUHHjj0gxXE4OXheseePN5G00F_cjckq4oKZOHShIqIKBTA7HRZYKBS8IZUilEVxMrlGVL0hDSSMmkTy7TLDWNGE9pTjEstE8E5i45QsygLc4ywoDIOjTXSak4Njbi2oRWpcJcrTwyjJ6gFUzF_86YZ89UsnP7dfYV2h5N8NB9l44cztOe_6IEec46a1fvSXDjkr-RlveDfshCpXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Third+International+Symposium+on+Intelligent+Information+Technology+and+Security+Informatics&rft.atitle=The+Study+of+Electrocardiograph+Based+on+Radial+Basis+Function+Neural+Network&rft.au=Yang+Guangying&rft.au=Chen+Yue&rft.date=2010-04-01&rft.pub=IEEE&rft.isbn=9781424467303&rft.spage=143&rft.epage=145&rft_id=info:doi/10.1109%2FIITSI.2010.85&rft.externalDocID=5453631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/sc.gif&client=summon&freeimage=true |