Hybrid algorithm based mobile robot localization using DE and PSO

To take advantage of different algorithms and overcome their limitations, a new hybrid algorithm (DEPSO) based on Differential Evolution (DE) and Particle Swarm Optimization (PSO) is proposed in this paper for mobile robot localization. In the first step of DEPSO, the mutation and selection operator...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 32nd Chinese Control Conference pp. 5955 - 5959
Main Authors Huo Junfei, Ma Liling, Yu Yuanlong, Wang Junzheng
Format Conference Proceeding
LanguageEnglish
Published TCCT, CAA 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To take advantage of different algorithms and overcome their limitations, a new hybrid algorithm (DEPSO) based on Differential Evolution (DE) and Particle Swarm Optimization (PSO) is proposed in this paper for mobile robot localization. In the first step of DEPSO, the mutation and selection operators of DE are employed to produce a new population for effective variation. Next, PSO is carried out for local exploration with high efficiency, followed by crossover and selection operations. During iteration of the DEPSO progress, the extent of searching region for the population is increased and decreased in sequence, and eventually resulted in convergence to an optimal solution. This method has advantages of fast convergence, strong searching ability and good robustness. Compared with the DE and PSO, DEPSO inhibits the particle degeneracy and enhances the diversity, meanwhile improves the convergence speed and positioning accuracy. The simulation and experiment results prove its effectiveness and feasibility.
AbstractList To take advantage of different algorithms and overcome their limitations, a new hybrid algorithm (DEPSO) based on Differential Evolution (DE) and Particle Swarm Optimization (PSO) is proposed in this paper for mobile robot localization. In the first step of DEPSO, the mutation and selection operators of DE are employed to produce a new population for effective variation. Next, PSO is carried out for local exploration with high efficiency, followed by crossover and selection operations. During iteration of the DEPSO progress, the extent of searching region for the population is increased and decreased in sequence, and eventually resulted in convergence to an optimal solution. This method has advantages of fast convergence, strong searching ability and good robustness. Compared with the DE and PSO, DEPSO inhibits the particle degeneracy and enhances the diversity, meanwhile improves the convergence speed and positioning accuracy. The simulation and experiment results prove its effectiveness and feasibility.
Author Yu Yuanlong
Wang Junzheng
Huo Junfei
Ma Liling
Author_xml – sequence: 1
  surname: Huo Junfei
  fullname: Huo Junfei
  email: huojf1988@163.com
  organization: Beijing Inst. of Technol., Acad. of Autom., Beijing, China
– sequence: 2
  surname: Ma Liling
  fullname: Ma Liling
  email: maliling@bit.edu.cn
  organization: Beijing Inst. of Technol., Acad. of Autom., Beijing, China
– sequence: 3
  surname: Yu Yuanlong
  fullname: Yu Yuanlong
  organization: Beijing Inst. of Technol., Acad. of Autom., Beijing, China
– sequence: 4
  surname: Wang Junzheng
  fullname: Wang Junzheng
  organization: Beijing Inst. of Technol., Acad. of Autom., Beijing, China
BookMark eNotzLtOwzAUAFCDikRT-AIW_0Akv-LYY1UKRapUJOhc3eReFyPHRkkYytczwHS2U7FFLpmuWOWdk43VTttrtlTSylp51d6yapo-hbDCS71k692lGyNySOcyxvlj4B1MhHwoXUzEx9KVmafSQ4o_MMeS-fcU85k_bjlk5K9vhzt2EyBNdP_vih2ftu-bXb0_PL9s1vs6yraZa09BkDEaiWRvQZFAahqNQaF0SqMhQ8GT9Nijw6DBBSMdtFb7AA6dXrGHvzcS0elrjAOMl5O1Rhgn9C_r0UYw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISBN 9881563836
9789881563835
EISSN 2161-2927
EndPage 5959
ExternalDocumentID 6640480
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
JC5
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-9ef0e443dee1c6a2e0de553df2d1823d4e4ef9e19dcd8df3a8f418a7639fa8d83
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:07 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-9ef0e443dee1c6a2e0de553df2d1823d4e4ef9e19dcd8df3a8f418a7639fa8d83
PageCount 5
ParticipantIDs ieee_primary_6640480
PublicationCentury 2000
PublicationDate 2013-July
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-July
PublicationDecade 2010
PublicationTitle Proceedings of the 32nd Chinese Control Conference
PublicationTitleAbbrev ChiCC
PublicationYear 2013
Publisher TCCT, CAA
Publisher_xml – name: TCCT, CAA
SSID ssj0060913
Score 1.9491022
Snippet To take advantage of different algorithms and overcome their limitations, a new hybrid algorithm (DEPSO) based on Differential Evolution (DE) and Particle...
SourceID ieee
SourceType Publisher
StartPage 5955
SubjectTerms Convergence
differential evolution
localization
mobile robot
Mobile robots
Optimization
Particle filters
Particle swarm optimization
Sociology
Statistics
Title Hybrid algorithm based mobile robot localization using DE and PSO
URI https://ieeexplore.ieee.org/document/6640480
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ7yogPGdHjy6CNvHtkejEGKCkigJN9Jtp2gU1pDloL_edhd8xYO3poc2mabzzbTzfQNwphEdd6wbUZeKiAkXR1pyF6nUGKGT0KcmvEMOb8VgzG4mfFKB808uDCIWxWfYDsPiL99mZhWeyi6EYIECXYVqolTJ1dp4XRH0LX90SCkAor8Nw83SZV3Ic3uVp23z_kt18b9770Dri4pHRp8gswsVXDRg65uKYAPqIWAs9ZabcDl4Cxwsol9mmc_7H-ck4JQl8yz1958sszTLSQFgawImCZXvM3LdI3phyej-rgXjfu_hahCt2yRETx7780ih6yBj1CJ2vX1j7FjknFoXW588UMuQoVPYVdZYaR3V0p-N1N6xKKellXQPaotsgftAfPgjuTIJCk6ZNKhSnjB_RWmSKmpidwDNYJnpa6mEMV0b5fDv6SOox0XziFDcegy1fLnCEw_heXpanN0HYyKgbg
link.rule.ids 310,311,783,787,792,793,799,23944,23945,25154,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHsSLChjf9uDRRdg-dvdoVLIqIImQcCO77RSNsmvIctBfb7sL-IgHb00PbTJN55tp5_sG4CxC1FyzlkN1LBwmtOtEPtdOEEspIs_2qbHvkN2eCIfsbsRHJThfcWEQMS8-w4Yd5n_5KpVz-1R2IQSzFOg1WOc2rijYWku_K6zC5Y8eKTlEtLegu1y8qAx5acyzuCE_fuku_nf3bah_kfFIfwUzO1DCpAqb33QEq1CxIWOhuFyDy_DdsrBI9DpJTeb_NCUWqRSZprHxAGSWxmlGcghbUDCJrX2fkOsbEiWK9B8f6jBs3wyuQmfRKMF5NuifOQHqJjJGFWLLWNjFpkLOqdKuMukDVQwZ6gBbgZLKV5pGvjkdPzKuJdCRr3y6C-UkTXAPiAmAfB5IDwWnzJcYxNxj5pJSLw6odPU-1Kxlxm-FFsZ4YZSDv6dPYSMcdDvjzm3v_hAqbt5Kwpa6HkE5m83x2AB6Fp_k5_gJ9tejuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+32nd+Chinese+Control+Conference&rft.atitle=Hybrid+algorithm+based+mobile+robot+localization+using+DE+and+PSO&rft.au=Huo+Junfei&rft.au=Ma+Liling&rft.au=Yu+Yuanlong&rft.au=Wang+Junzheng&rft.date=2013-07-01&rft.pub=TCCT%2C+CAA&rft.eissn=2161-2927&rft.spage=5955&rft.epage=5959&rft.externalDocID=6640480