Hybrid algorithm based mobile robot localization using DE and PSO
To take advantage of different algorithms and overcome their limitations, a new hybrid algorithm (DEPSO) based on Differential Evolution (DE) and Particle Swarm Optimization (PSO) is proposed in this paper for mobile robot localization. In the first step of DEPSO, the mutation and selection operator...
Saved in:
Published in | Proceedings of the 32nd Chinese Control Conference pp. 5955 - 5959 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
TCCT, CAA
01.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To take advantage of different algorithms and overcome their limitations, a new hybrid algorithm (DEPSO) based on Differential Evolution (DE) and Particle Swarm Optimization (PSO) is proposed in this paper for mobile robot localization. In the first step of DEPSO, the mutation and selection operators of DE are employed to produce a new population for effective variation. Next, PSO is carried out for local exploration with high efficiency, followed by crossover and selection operations. During iteration of the DEPSO progress, the extent of searching region for the population is increased and decreased in sequence, and eventually resulted in convergence to an optimal solution. This method has advantages of fast convergence, strong searching ability and good robustness. Compared with the DE and PSO, DEPSO inhibits the particle degeneracy and enhances the diversity, meanwhile improves the convergence speed and positioning accuracy. The simulation and experiment results prove its effectiveness and feasibility. |
---|---|
AbstractList | To take advantage of different algorithms and overcome their limitations, a new hybrid algorithm (DEPSO) based on Differential Evolution (DE) and Particle Swarm Optimization (PSO) is proposed in this paper for mobile robot localization. In the first step of DEPSO, the mutation and selection operators of DE are employed to produce a new population for effective variation. Next, PSO is carried out for local exploration with high efficiency, followed by crossover and selection operations. During iteration of the DEPSO progress, the extent of searching region for the population is increased and decreased in sequence, and eventually resulted in convergence to an optimal solution. This method has advantages of fast convergence, strong searching ability and good robustness. Compared with the DE and PSO, DEPSO inhibits the particle degeneracy and enhances the diversity, meanwhile improves the convergence speed and positioning accuracy. The simulation and experiment results prove its effectiveness and feasibility. |
Author | Yu Yuanlong Wang Junzheng Huo Junfei Ma Liling |
Author_xml | – sequence: 1 surname: Huo Junfei fullname: Huo Junfei email: huojf1988@163.com organization: Beijing Inst. of Technol., Acad. of Autom., Beijing, China – sequence: 2 surname: Ma Liling fullname: Ma Liling email: maliling@bit.edu.cn organization: Beijing Inst. of Technol., Acad. of Autom., Beijing, China – sequence: 3 surname: Yu Yuanlong fullname: Yu Yuanlong organization: Beijing Inst. of Technol., Acad. of Autom., Beijing, China – sequence: 4 surname: Wang Junzheng fullname: Wang Junzheng organization: Beijing Inst. of Technol., Acad. of Autom., Beijing, China |
BookMark | eNotzLtOwzAUAFCDikRT-AIW_0Akv-LYY1UKRapUJOhc3eReFyPHRkkYytczwHS2U7FFLpmuWOWdk43VTttrtlTSylp51d6yapo-hbDCS71k692lGyNySOcyxvlj4B1MhHwoXUzEx9KVmafSQ4o_MMeS-fcU85k_bjlk5K9vhzt2EyBNdP_vih2ftu-bXb0_PL9s1vs6yraZa09BkDEaiWRvQZFAahqNQaF0SqMhQ8GT9Nijw6DBBSMdtFb7AA6dXrGHvzcS0elrjAOMl5O1Rhgn9C_r0UYw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISBN | 9881563836 9789881563835 |
EISSN | 2161-2927 |
EndPage | 5959 |
ExternalDocumentID | 6640480 |
Genre | orig-research |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI JC5 M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-9ef0e443dee1c6a2e0de553df2d1823d4e4ef9e19dcd8df3a8f418a7639fa8d83 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:07 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-9ef0e443dee1c6a2e0de553df2d1823d4e4ef9e19dcd8df3a8f418a7639fa8d83 |
PageCount | 5 |
ParticipantIDs | ieee_primary_6640480 |
PublicationCentury | 2000 |
PublicationDate | 2013-July |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-July |
PublicationDecade | 2010 |
PublicationTitle | Proceedings of the 32nd Chinese Control Conference |
PublicationTitleAbbrev | ChiCC |
PublicationYear | 2013 |
Publisher | TCCT, CAA |
Publisher_xml | – name: TCCT, CAA |
SSID | ssj0060913 |
Score | 1.9491022 |
Snippet | To take advantage of different algorithms and overcome their limitations, a new hybrid algorithm (DEPSO) based on Differential Evolution (DE) and Particle... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 5955 |
SubjectTerms | Convergence differential evolution localization mobile robot Mobile robots Optimization Particle filters Particle swarm optimization Sociology Statistics |
Title | Hybrid algorithm based mobile robot localization using DE and PSO |
URI | https://ieeexplore.ieee.org/document/6640480 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ7yogPGdHjy6CNvHtkejEGKCkigJN9Jtp2gU1pDloL_edhd8xYO3poc2mabzzbTzfQNwphEdd6wbUZeKiAkXR1pyF6nUGKGT0KcmvEMOb8VgzG4mfFKB808uDCIWxWfYDsPiL99mZhWeyi6EYIECXYVqolTJ1dp4XRH0LX90SCkAor8Nw83SZV3Ic3uVp23z_kt18b9770Dri4pHRp8gswsVXDRg65uKYAPqIWAs9ZabcDl4Cxwsol9mmc_7H-ck4JQl8yz1958sszTLSQFgawImCZXvM3LdI3phyej-rgXjfu_hahCt2yRETx7780ih6yBj1CJ2vX1j7FjknFoXW588UMuQoVPYVdZYaR3V0p-N1N6xKKellXQPaotsgftAfPgjuTIJCk6ZNKhSnjB_RWmSKmpidwDNYJnpa6mEMV0b5fDv6SOox0XziFDcegy1fLnCEw_heXpanN0HYyKgbg |
link.rule.ids | 310,311,783,787,792,793,799,23944,23945,25154,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHsSLChjf9uDRRdg-dvdoVLIqIImQcCO77RSNsmvIctBfb7sL-IgHb00PbTJN55tp5_sG4CxC1FyzlkN1LBwmtOtEPtdOEEspIs_2qbHvkN2eCIfsbsRHJThfcWEQMS8-w4Yd5n_5KpVz-1R2IQSzFOg1WOc2rijYWku_K6zC5Y8eKTlEtLegu1y8qAx5acyzuCE_fuku_nf3bah_kfFIfwUzO1DCpAqb33QEq1CxIWOhuFyDy_DdsrBI9DpJTeb_NCUWqRSZprHxAGSWxmlGcghbUDCJrX2fkOsbEiWK9B8f6jBs3wyuQmfRKMF5NuifOQHqJjJGFWLLWNjFpkLOqdKuMukDVQwZ6gBbgZLKV5pGvjkdPzKuJdCRr3y6C-UkTXAPiAmAfB5IDwWnzJcYxNxj5pJSLw6odPU-1Kxlxm-FFsZ4YZSDv6dPYSMcdDvjzm3v_hAqbt5Kwpa6HkE5m83x2AB6Fp_k5_gJ9tejuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+32nd+Chinese+Control+Conference&rft.atitle=Hybrid+algorithm+based+mobile+robot+localization+using+DE+and+PSO&rft.au=Huo+Junfei&rft.au=Ma+Liling&rft.au=Yu+Yuanlong&rft.au=Wang+Junzheng&rft.date=2013-07-01&rft.pub=TCCT%2C+CAA&rft.eissn=2161-2927&rft.spage=5955&rft.epage=5959&rft.externalDocID=6640480 |