Computing Polynomials by Chemical Reaction Networks

Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Global Communications Conference (GLOBECOM) pp. 1 - 6
Main Authors Salehi, Sayed Ahmad, Parhi, Keshab K., Riedel, Marc D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text
DOI10.1109/GLOCOM.2016.7841678

Cover

Abstract Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. In the proposed encoding approach, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomials. The method is illustrated first for generic CRNs; then the chemical reactions designed for two examples are mapped to DNA strand-displacement reactions.
AbstractList Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. In the proposed encoding approach, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomials. The method is illustrated first for generic CRNs; then the chemical reactions designed for two examples are mapped to DNA strand-displacement reactions.
Author Salehi, Sayed Ahmad
Parhi, Keshab K.
Riedel, Marc D.
Author_xml – sequence: 1
  givenname: Sayed Ahmad
  surname: Salehi
  fullname: Salehi, Sayed Ahmad
  email: saleh022@umn.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Keshab K.
  surname: Parhi
  fullname: Parhi, Keshab K.
  email: parhi@umn.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Marc D.
  surname: Riedel
  fullname: Riedel, Marc D.
  email: mriedel@umn.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA
BookMark eNotj81KxDAYACPowV19gr3kBVqTfvk9StBVqFZEz0u-NGqwTZZuRfr2CrunuQwDsyLnueRIyIazmnNmb7Zt57qnumFc1doIrrQ5IysumWUcGmMuCbgy7n_mlD_pSxmWXMbkhwPFhbqvOKbgB_oafZhTyfQ5zr9l-j5ckYuPfylen7gm7_d3b-6harvto7ttq8S1nCuLKJVSgQmvwZiAAliDYD3I4BuF2khhELWN3vagQPTAUemgVY8m9gLWZHPsphjjbj-l0U_L7vQBf8vkQdU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/GLOCOM.2016.7841678
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509013288
9781509013289
EndPage 6
ExternalDocumentID 7841678
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i175t-9bb5666c04a7388cb4302b39a35ca26b78548bb79ea9d3634d31b67c76db8ed43
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:42 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-9bb5666c04a7388cb4302b39a35ca26b78548bb79ea9d3634d31b67c76db8ed43
PageCount 6
ParticipantIDs ieee_primary_7841678
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 IEEE Global Communications Conference (GLOBECOM)
PublicationTitleAbbrev GLOCOM
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.609977
Snippet Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Chemicals
Computational modeling
Computers
DNA
Encoding
Kinetic theory
Stochastic processes
Title Computing Polynomials by Chemical Reaction Networks
URI https://ieeexplore.ieee.org/document/7841678
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhECa1J09qWuM7HDzKttthYTk31sbYR4xNemsYYBOjaY1uD_XXC8u2RuPBGxASnuED5vtmCLlG1KAKtIz76wbjIFKGhQRmsixDobXHmCBOHo3FcMbv59m8QW52WhjnXEU-c0lIVrZ8uzLr8FXWqWxkMt8je36bRa1W7Ugo7arO3cOkPxkFtpZI6po_QqZUiDE4IKNtW5Eo8pKsS0zM5y83jP_tzCFpf2vz6HSHOkek4ZYtAjE4gy-g09XrJkiN_baiuKFbhwD00UUJAx1H4vdHm8wGt0_9IavDIbBnj_ElU4j-7iVMl2sJeW6QQ7eHoDRkRvcEyty_PhClclpZEMAtpCikkcJi7iyHY9JcrpbuhFCXKlN4rM9dhrwoCg0-20utsQbAn52npBUGvHiLHi8W9VjP_i4-J_th0iPJ44I0y_e1u_RQXeJVtUZfgUSWOw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHNxiv67YzEVEZEAMJN9LXdonRgNFxwL_ebp0YjQdvbdOkbV7T77X9vvcArogkJhlpj1t3w-MoAo-yCD0VhiEJKS3GFOLkdCj6U34_C2c1uN5oYYwxJfnM-EWx_MvXS7Uqnspa5R9ZFG_BtsV9Hjq1VhVKKGgnrdvBqDtKC76W8Ku-P5KmlJjR24P0azRHFXn2Vzn56uNXIMb_Tmcfmt_qPDbe4M4B1MyiAejSM9gGNl6-rAuxsd1YjNbsKyQAezROxMCGjvr93oRp72bS7XtVQgTvyaJ87iVE1vsSqs1lhHGsiGO7Q5hIDJXsCIpie_8gihIjE40CucaARKQioSk2muMh1BfLhTkCZoJEZRbtYxMSz7JMoq12Aq20QrSn5zE0igXPX13Mi3m11pO_my9hpz9JB_PB3fDhFHYLAzjKxxnU87eVObfAndNFaa9PkOuZiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Global+Communications+Conference+%28GLOBECOM%29&rft.atitle=Computing+Polynomials+by+Chemical+Reaction+Networks&rft.au=Salehi%2C+Sayed+Ahmad&rft.au=Parhi%2C+Keshab+K.&rft.au=Riedel%2C+Marc+D.&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FGLOCOM.2016.7841678&rft.externalDocID=7841678