Classification of Internet users using discriminant analysis and neural networks

The (reliable) classification of Internet users, based on their hourly traffic profile, can be advantageous in several traffic engineering tasks and in the selection of suitable tariffing plans. For example, it can be used to optimize the routing by mixing users with contrasting hourly traffic profi...

Full description

Saved in:
Bibliographic Details
Published in2005 Next Generation Internet Networks pp. 341 - 348
Main Authors Nogueira, A., de Oliveira, M.R., Salvador, P., Valadas, R., Pacheco, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN9780780389007
078038900X
DOI10.1109/NGI.2005.1431686

Cover

Abstract The (reliable) classification of Internet users, based on their hourly traffic profile, can be advantageous in several traffic engineering tasks and in the selection of suitable tariffing plans. For example, it can be used to optimize the routing by mixing users with contrasting hourly traffic profiles in the same network resources or to advise users on the tariffing plan that best suits their needs. In this paper we compare the use of discriminant analysis and artificial neural networks for the classification of Internet users. The classification is based on a partition obtained by cluster analysis. We classify the Internet users based on a data set measured at the access network of a Portuguese ISP. Using cluster analysis performed over half of the users (randomly chosen) we have identified three groups of users with similar behavior. The classification methods were applied to the second half of users and the obtained classification results compared with those of cluster analysis performed over the complete set of users. Our findings indicate both discriminant analysis and neural networks are valuable classification procedures, with the former slightly outperforming the latter, for the specific scenario under analysis.
AbstractList The (reliable) classification of Internet users, based on their hourly traffic profile, can be advantageous in several traffic engineering tasks and in the selection of suitable tariffing plans. For example, it can be used to optimize the routing by mixing users with contrasting hourly traffic profiles in the same network resources or to advise users on the tariffing plan that best suits their needs. In this paper we compare the use of discriminant analysis and artificial neural networks for the classification of Internet users. The classification is based on a partition obtained by cluster analysis. We classify the Internet users based on a data set measured at the access network of a Portuguese ISP. Using cluster analysis performed over half of the users (randomly chosen) we have identified three groups of users with similar behavior. The classification methods were applied to the second half of users and the obtained classification results compared with those of cluster analysis performed over the complete set of users. Our findings indicate both discriminant analysis and neural networks are valuable classification procedures, with the former slightly outperforming the latter, for the specific scenario under analysis.
Author de Oliveira, M.R.
Valadas, R.
Nogueira, A.
Salvador, P.
Pacheco, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Nogueira
  fullname: Nogueira, A.
  organization: Inst. of Telecommun., Aveiro Univ., Portugal
– sequence: 2
  givenname: M.R.
  surname: de Oliveira
  fullname: de Oliveira, M.R.
– sequence: 3
  givenname: P.
  surname: Salvador
  fullname: Salvador, P.
– sequence: 4
  givenname: R.
  surname: Valadas
  fullname: Valadas, R.
– sequence: 5
  givenname: A.
  surname: Pacheco
  fullname: Pacheco, A.
BookMark eNotj0FLxDAQhQMqqGvvgpf8ga1J23QmRym6W1jUg56XNJlKtKaSdJH99wbcx_C-YQ7De9fsPMyBGLuVopRS6PvnTV9WQqhSNrVssT1jhQYUeWrUQsAlK1L6FFlKocL6ir12k0nJj96axc-BzyPvw0Ix0MIPiWLK7sMHdz7Z6L99MGHhJpjpmHzKi-OBDtFMGcvvHL_SDbsYzZSoOHHF3p8e37rtevey6buH3dpLUMtaD9I6ctrC0MghR2uoQgAHAhErZ0nKfBAwklKARoPTMFjUDlqHwoh6xe7-_3oi2v_kbCYe96fe9R9Ui1CR
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NGI.2005.1431686
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EndPage 348
ExternalDocumentID 1431686
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-9b1cded9c7b41b0074e2877d708882dce11e2807fe5578a97d97bc89d76d80a03
IEDL.DBID RIE
ISBN 9780780389007
078038900X
IngestDate Wed Aug 27 02:17:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-9b1cded9c7b41b0074e2877d708882dce11e2807fe5578a97d97bc89d76d80a03
PageCount 8
ParticipantIDs ieee_primary_1431686
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 Next Generation Internet Networks
PublicationTitleAbbrev NGI
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000558583
Score 1.4015129
Snippet The (reliable) classification of Internet users, based on their hourly traffic profile, can be advantageous in several traffic engineering tasks and in the...
SourceID ieee
SourceType Publisher
StartPage 341
SubjectTerms Artificial neural networks
Electronic mail
Internet
IP networks
Mathematics
Neural networks
Performance analysis
Routing
Telecommunication network reliability
Telecommunication traffic
Title Classification of Internet users using discriminant analysis and neural networks
URI https://ieeexplore.ieee.org/document/1431686
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwGP3UdoKFo0Xc8sBI2iRNfMyIUpBadaBSt8rHF4RAKSLpwq_Hdg4OMTDFzhBZjo_Pz--9D-AqtvPfSMwCKhMWJDKlgSNDBVQJo2wITFXoxMmzOZ0uk4dVuurAdauFQURPPsOhK_q7fLPRWweVjSKn2-a0C107zCqtVounhKkNfPnYn8y5c40Lw8Zgp6mz5poyFKP53X0FqNTf_JFcxe8tkz2YNa2qKCUvw22phvrjl2Hjf5u9D4MvFR9ZtPvTAXQwP4TdbwaEtjZrXVuLPix8hkzHHfK_i2wyUgGGWBIHZhTEseSfiFPyVtnA8pLI2tXEFgxx7pjy1T48t7wYwHJy-3gzDeqMC8GzDSPKQKhIGzRCM5VEyoUXaE9UzDC7FvHYaIwidPY5GaZ2pkvBjGBKc2EYNTyU4fgIevkmx2MgdqXVdv2IUqlpwpWRLONZFsdKJFoiS0-g73pq_VaZaqzrTjr9-_UZ7HjPVI99nEOvfN_ihY0GSnXph8Enz8ax5A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH4qZQAWjhZx44GRtEma-JgRpYWm6tBK3SpfQagoRTRd-PXYzsEhBqbYGSLLjt97_vy-7wHchGb_K65TD_OIeBGPsWeToTwsmBImBMbCt-TkZIwHs-hxHs8bcFtzYbTWLvlMd2zT3eWrldxYqKwbWN42xVuwbfx-FBdsrRpR8WMT-tKeO5tTqxvn-5XETtUn1UWlz7rjh2EBqZRf_VFexXmX_j4k1biKpJJlZ5OLjvz4Jdn434EfQPuLx4cmtYc6hIbOjmDvmwSh6SW1buu6BRNXI9NmD7kFQ6sUFZChzpGFM9bI5sk_I8vlLeqBZTnipa6JaShk9TH5q3m47PJ1G2b9--ndwCtrLngvJpDIPSYCqbRikogoEDbA0OZMRRQx1oiGSuog0FZAJ9Wx2eucEcWIkJQpghX1ud87hma2yvQJIGNrpbEgQcwljqhQnKQ0TcNQsEhyTeJTaNmZWrwVshqLcpLO_n59DTuDaTJajIbjp3PYdQqqDgm5gGb-vtGXJjbIxZX7JT4BUfa1MQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+Next+Generation+Internet+Networks&rft.atitle=Classification+of+Internet+users+using+discriminant+analysis+and+neural+networks&rft.au=Nogueira%2C+A.&rft.au=de+Oliveira%2C+M.R.&rft.au=Salvador%2C+P.&rft.au=Valadas%2C+R.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780780389007&rft.spage=341&rft.epage=348&rft_id=info:doi/10.1109%2FNGI.2005.1431686&rft.externalDocID=1431686
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780389007/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780389007/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780389007/sc.gif&client=summon&freeimage=true