Dual Domain Learning of Optimal Resource Allocations in Wireless Systems

We consider the problem of finding optimal resource allocations subject to system constraints in a generic class of problems in wireless communications. These problems are inherently challenging due to functional optimization and potential non-convexities. However, these problems can be observed to...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 4729 - 4733
Main Authors Eisen, Mark, Zhang, Clark, Chamon, Luiz F. O., Lee, Daniel D., Ribeiro, Alejandro
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2019
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP.2019.8683150

Cover

Abstract We consider the problem of finding optimal resource allocations subject to system constraints in a generic class of problems in wireless communications. These problems are inherently challenging due to functional optimization and potential non-convexities. However, these problems can be observed to take the form of a regression problem, although one in which the statistical loss function appears as a constraint. This motivates the use of machine learning model parameterizations. To apply gradient-based solution algorithms that do not require model knowledge, we convert the constrained optimization problem to an unconstrained one using Lagrangian duality. Despite the non-convexity in the problem, we formally show that the sub-optimality of the dual domain problem is small when the learning parameterization is sufficiently dense. We then present a primal-dual learning algorithm that looks for solutions to the dual problem using model-free gradient estimates. In a numerical simulation, we demonstrate the near-optimality of the proposed model-free algorithm using a neural network parametrization for a capacity maximization problem.
AbstractList We consider the problem of finding optimal resource allocations subject to system constraints in a generic class of problems in wireless communications. These problems are inherently challenging due to functional optimization and potential non-convexities. However, these problems can be observed to take the form of a regression problem, although one in which the statistical loss function appears as a constraint. This motivates the use of machine learning model parameterizations. To apply gradient-based solution algorithms that do not require model knowledge, we convert the constrained optimization problem to an unconstrained one using Lagrangian duality. Despite the non-convexity in the problem, we formally show that the sub-optimality of the dual domain problem is small when the learning parameterization is sufficiently dense. We then present a primal-dual learning algorithm that looks for solutions to the dual problem using model-free gradient estimates. In a numerical simulation, we demonstrate the near-optimality of the proposed model-free algorithm using a neural network parametrization for a capacity maximization problem.
Author Zhang, Clark
Eisen, Mark
Lee, Daniel D.
Ribeiro, Alejandro
Chamon, Luiz F. O.
Author_xml – sequence: 1
  givenname: Mark
  surname: Eisen
  fullname: Eisen, Mark
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania
– sequence: 2
  givenname: Clark
  surname: Zhang
  fullname: Zhang, Clark
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania
– sequence: 3
  givenname: Luiz F. O.
  surname: Chamon
  fullname: Chamon, Luiz F. O.
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania
– sequence: 4
  givenname: Daniel D.
  surname: Lee
  fullname: Lee, Daniel D.
  organization: Department of Electrical and Computer Engineering, Cornell Tech
– sequence: 5
  givenname: Alejandro
  surname: Ribeiro
  fullname: Ribeiro, Alejandro
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania
BookMark eNotj81Kw0AUhUdRsK19gm7mBRLvzWT-lqVVKwQqRtFdGZM7MpKfkkkXfXsDdnUW5_DxnTm76fqOGFshpIhgH14267J8TTNAmxplBEq4YkurDebaWoMC8ZrNMqFtgha-7tg8xl8AMDo3M7bbnlzDt33rQscLckMXuh_ee74_jqGdqjeK_WmoiK-bpq_cGPou8mn7GQZqKEZenuNIbbxnt941kZaXXLCPp8f3zS4p9s-TYpEE1HJMrKuFlt9KK9IZeFNTbqgChc57UUsPk3UtXa6UrIRFX1eavMksyQxAGC8WbPXPDUR0OA6T5HA-XI6LPzLeTtk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2019.8683150
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781479981311
1479981311
EISSN 2379-190X
EndPage 4733
ExternalDocumentID 8683150
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-9ad375b676e720f8de48ec061aff3d5f0147d5a4665c391fdc7ef829e520038f3
IEDL.DBID RIE
IngestDate Wed Aug 27 07:33:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-9ad375b676e720f8de48ec061aff3d5f0147d5a4665c391fdc7ef829e520038f3
PageCount 5
ParticipantIDs ieee_primary_8683150
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.102354
Snippet We consider the problem of finding optimal resource allocations subject to system constraints in a generic class of problems in wireless communications. These...
SourceID ieee
SourceType Publisher
StartPage 4729
SubjectTerms duality gap
leaning
Machine learning
Neural networks
Numerical models
Numerical simulation
Optimization
resource allocation
Resource management
Signal processing
Signal processing algorithms
Speech processing
Wireless communication
wireless communications
Title Dual Domain Learning of Optimal Resource Allocations in Wireless Systems
URI https://ieeexplore.ieee.org/document/8683150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELYoU7v0AVXf8tCxgSR2HHtEUEQr0SJRJDbk-FGhQoKqZOmv7zkJ9KEO3aIkli37dJ_v_N1nhG4B4q1L4HuUJBCgMGU94VvtKQXwQpQIwsTlIcdPbDSjj_No3kB3u1oYY0xJPjMd91ie5etMFS5V1uWMkzJA3wMzq2q1dl6Xx5TXqkKBL7oP_d50OnHULbCFqtmP-1NK-BgeovG244o18tYp8qSjPn5pMv53ZEeo_VWohyc7CDpGDZOeoINvGoMtNBoUcoUH2VouU1yrqb7izOJncBZr-LRN4OPeygFbaYcY_nW82BX4QVyLmrfRbHj_0h959fUJ3hL2BLknpCZxlLCYmTj0LdeGcqMAv6W1REcWgqNYR5IyFikiAqtVbCwPhXFKTIRbcoqaaZaaM4Qpk8TATkUHRlIrWGKt0oRIrkIfmqlz1HJzsthUChmLejou_n59ifbdulS0wSvUzN8Lcw3Qnic35Zp-AhV3pKQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6IHtSLH2D8tgePDra169ojAclQQBIg4Ua6fhgibMZsF3-97TbwIx68LV2bNm3zPn3fPu9TAO4MxGsbwHcwio2DQoR2mKulI4SBFySY58c2DjkckWiGH-fBvAbut7kwSqmCfKaa9rO4y5epyG2orEUJRYWDvmtwHwdlttbW7tIQ00pXyHNZq99pTyZjS94yu6Fs-OMFlQJAeodguOm65I28NvMsboqPX6qM_x3bEWh8perB8RaEjkFNJSfg4JvKYB1E3ZyvYDdd82UCKz3VF5hq-GzMxdr82oTwYXtloa3YidDUtczYlbGEsJI1b4BZ72HaiZzqAQVnaU4FmcO4RGEQk5Co0Hc1lQpTJQyCc62RDLRxj0IZcExIIBDztBSh0tRnymoxIarRKdhJ0kSdAYgJR8qcVaSnONaMxFoLiRCnwndNM3EO6nZOFm-lRsaimo6Lv4tvwV40HQ4Wg_7o6RLs2zUqSYRXYCd7z9W1AfosvinW9xPjKKfx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Dual+Domain+Learning+of+Optimal+Resource+Allocations+in+Wireless+Systems&rft.au=Eisen%2C+Mark&rft.au=Zhang%2C+Clark&rft.au=Chamon%2C+Luiz+F.+O.&rft.au=Lee%2C+Daniel+D.&rft.date=2019-05-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=4729&rft.epage=4733&rft_id=info:doi/10.1109%2FICASSP.2019.8683150&rft.externalDocID=8683150