Coflourish: An SDN-Assisted Coflow Scheduling Framework for Clouds
Existing coflow scheduling frameworks effectively shorten communication time and completion time of cluster applications. However, existing frameworks only consider available bandwidth on hosts and overlook congestion in the network when making scheduling decisions. Through extensive simulations usi...
Saved in:
Published in | IEEE ... International Conference on Cloud Computing pp. 1 - 8 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2159-6190 |
DOI | 10.1109/CLOUD.2017.10 |
Cover
Loading…
Abstract | Existing coflow scheduling frameworks effectively shorten communication time and completion time of cluster applications. However, existing frameworks only consider available bandwidth on hosts and overlook congestion in the network when making scheduling decisions. Through extensive simulations using the realistic workload probability distribution from Facebook, we observe the performance degradation of the state-of-the-art coflow scheduling framework, Varys, in the cloud environment on a shared data center network (DCN) because of the lack of network congestion information. We propose Coflourish, the first coflow scheduling framework that exploits the congestion feedback assistances from the software-defined-networking(SDN)-enabled switches in the networks for available bandwidth estimation. Our simulation results demonstrate that Coflourish outperforms Varys by up to 75.5% in terms of average coflow completion time under various workload conditions. The proposed work also reveals the potentials of integration with traffic engineering mechanisms in lower levels for further performance optimization. |
---|---|
AbstractList | Existing coflow scheduling frameworks effectively shorten communication time and completion time of cluster applications. However, existing frameworks only consider available bandwidth on hosts and overlook congestion in the network when making scheduling decisions. Through extensive simulations using the realistic workload probability distribution from Facebook, we observe the performance degradation of the state-of-the-art coflow scheduling framework, Varys, in the cloud environment on a shared data center network (DCN) because of the lack of network congestion information. We propose Coflourish, the first coflow scheduling framework that exploits the congestion feedback assistances from the software-defined-networking(SDN)-enabled switches in the networks for available bandwidth estimation. Our simulation results demonstrate that Coflourish outperforms Varys by up to 75.5% in terms of average coflow completion time under various workload conditions. The proposed work also reveals the potentials of integration with traffic engineering mechanisms in lower levels for further performance optimization. |
Author | Seung-Jong Park Chui-Hui Chiu Qingyang Wang Singh, Dipak Kumar |
Author_xml | – sequence: 1 surname: Chui-Hui Chiu fullname: Chui-Hui Chiu email: cchiu1@lsu.edu organization: Div. of Comput. Sci. & Eng., Louisiana State Univ., Baton Rouge, LA, USA – sequence: 2 givenname: Dipak Kumar surname: Singh fullname: Singh, Dipak Kumar email: dsingh8@lsu.edu organization: Div. of Comput. Sci. & Eng., Louisiana State Univ., Baton Rouge, LA, USA – sequence: 3 surname: Qingyang Wang fullname: Qingyang Wang email: qwang26@lsu.edu organization: Div. of Comput. Sci. & Eng., Louisiana State Univ., Baton Rouge, LA, USA – sequence: 4 surname: Seung-Jong Park fullname: Seung-Jong Park email: sjpark@lsu.edu organization: Div. of Comput. Sci. & Eng., Louisiana State Univ., Baton Rouge, LA, USA |
BookMark | eNotjLFOwzAURQ0CibZ0ZGLxDyT42XHsxxZSCkgRHUrnyokdakgTZLeq-HsiYLi6Oro6d0ou-qF3hNwASwEY3pXVarNIOQOVAjsjU5BC54Ao9DmZcJCYjMSuyDzGD8YYMC0liAl5KIe2G47Bx909LXq6XrwmRYw-Hpylv9uJrpuds8fO9-90GczenYbwSdsh0HI0bbwml63popv_94xslo9v5XNSrZ5eyqJKPCh5SFAJxyVazVu0WY0orTFG1Jxjo6TJ8wZ1pm09JpfcqZojIM-E09xa1WgxI7d_v945t_0Kfm_C91YzwWQuxQ8Az0o9 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CLOUD.2017.10 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1538619938 9781538619933 |
EISSN | 2159-6190 |
EndPage | 8 |
ExternalDocumentID | 8030565 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-973e259d82f9d4b995daaa3b229c75a66c9848db48d652e7b2919243e82dd7c83 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:26:13 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-973e259d82f9d4b995daaa3b229c75a66c9848db48d652e7b2919243e82dd7c83 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8030565 |
PublicationCentury | 2000 |
PublicationDate | 2017-June |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-June |
PublicationDecade | 2010 |
PublicationTitle | IEEE ... International Conference on Cloud Computing |
PublicationTitleAbbrev | CLOUD |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001085513 ssib030101525 |
Score | 1.9907209 |
Snippet | Existing coflow scheduling frameworks effectively shorten communication time and completion time of cluster applications. However, existing frameworks only... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Application-aware Networks Back Bandwidth Cloud computing Coflow Scheduling Data Center Networks Estimation Ports (Computers) Processor scheduling Scheduling Software-defined Networking |
Title | Coflourish: An SDN-Assisted Coflow Scheduling Framework for Clouds |
URI | https://ieeexplore.ieee.org/document/8030565 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA3bnnyauonf5MFH082kzYdv2jmGuCnoYG-jTVImSifaIfjrvUnbTcQHHwqlX4SclHtPcs4NQmec9bVmjBOlBSWhlYrISFPCUp4aTUUmjXMjjyd8NA1vZ9Gsgc7XXhhrrRef2cCd-rV8s9QrN1XWkz7hjZqoCcSt9GrVY4e5WmlRNTb9_IoTYF2wTVnNXnx3Px04MZcInF_2x2YqPpYM22hct6KUkLwEqyIN9NevAo3_beY26m5ce_hhHY92UMPmu6hdb9uAq7-4g67jZfbqiwcuLvFVjh8HEwIoObwN9vc-4eEFxCBnVcfDWr6FIb_FMbxpPrpoOrx5ikek2kqBPEN-UBAlmAWiYyTNlAlTpSKTJAlLKQWMooRzrWQIsMDBI2pFSpVjZsxKaozQku2hVr7M7T7CFEiQ6ENelwHTUlkI34sSAUyGSc4TKQ9Qx3XJ_K2sljGveuPw78tHaMshUoqvjlGreF_ZEwjzRXrq8f0GdKOkig |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pCBePbHjy6C7bblzddJKiAJkLCjey23WA0YHSJib_e6T7AGA8eNmn2laZfm5lpv28GoTNOW1pTyj2lBfECK5UnmSYejXlsNBGJNE6N3B_w7ii4G7NxBZ0vtTDW2ox8Zn3XzM7yzVwv3FZZU2YOL1tD62D32UWu1ipnD3XZ0lgxO7MdFkfBuqCrxJrNsPcwajs6l_CdYvZHOZXMmnRqqF_2IyeRvPiLNPb1168Ujf_t6BZqrHR7-HFpkbZRxc52UK0s3ICLdVxH1-E8ec3SB04v8dUMP7UHHuDkEDc4e_YJL0_BCjmxOu6UBC4MHi4O4Uvz0UCjzs0w7HpFMQXvGTyE1FOCWgh1jCSJMkGsFDNRFNGYEECJRZxrJQMABi7OiBUxUS42o1YSY4SWdBdVZ_OZ3UOYQBgkWuDZJRBrqSSA_7FIQCxDJeeRlPuo7oZk8pbny5gUo3Hw9-1TtNEd9nuT3u3g_hBtOnRyKtYRqqbvC3sMRj-NTzKsvwE_BqfT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+...+International+Conference+on+Cloud+Computing&rft.atitle=Coflourish%3A+An+SDN-Assisted+Coflow+Scheduling+Framework+for+Clouds&rft.au=Chui-Hui+Chiu&rft.au=Singh%2C+Dipak+Kumar&rft.au=Qingyang+Wang&rft.au=Seung-Jong+Park&rft.date=2017-06-01&rft.pub=IEEE&rft.eissn=2159-6190&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCLOUD.2017.10&rft.externalDocID=8030565 |