A genetic hill climbing method for function optimization using a neighborhood based on interactions among parameters

Most conventional genetic algorithms (GAs) for function optimization always search all parameters simultaneously. As the result, the search space size increases exponentially with the number of parameters. Therefore, the search efficiency of these GAs deteriorates in high-dimensional function optimi...

Full description

Saved in:
Bibliographic Details
Published inThe 2003 Congress on Evolutionary Computation, 2003. CEC '03 Vol. 2; pp. 1251 - 1258 Vol.2
Main Authors Takeichi, H., Mizuguchi, N., Ono, I., Ono, N.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most conventional genetic algorithms (GAs) for function optimization always search all parameters simultaneously. As the result, the search space size increases exponentially with the number of parameters. Therefore, the search efficiency of these GAs deteriorates in high-dimensional function optimization because they requires a huge population size and enormous computation time. Generally, in order to find the optima, if a parameter has no interaction with the others, it can be searched independently and, if it has interactions with others, it must be searched with the ones which have interactions with it. We believe that, in many cases, all parameters do not need to be searched simultaneously because many evaluation functions in real-world applications have partially epistasis. We propose a new genetic hill climbing method. The proposed method, first, estimates all interactions among parameters and, then, incrementally improves a search point, using a neighborhood that is a subspace spaned by a parameter and the parameters having interactions with it, named epistasis neighborhood. The sampling method in an epistasis neighborhood is UNDX+MGG, which is a real-coded GA showing good performance on epistatic multimodal functions. We confirm that the proposed method shows better performance than conventional GAs on high-dimensional partially-epistatic functions by applying them to some benchmark problems.
AbstractList Most conventional genetic algorithms (GAs) for function optimization always search all parameters simultaneously. As the result, the search space size increases exponentially with the number of parameters. Therefore, the search efficiency of these GAs deteriorates in high-dimensional function optimization because they requires a huge population size and enormous computation time. Generally, in order to find the optima, if a parameter has no interaction with the others, it can be searched independently and, if it has interactions with others, it must be searched with the ones which have interactions with it. We believe that, in many cases, all parameters do not need to be searched simultaneously because many evaluation functions in real-world applications have partially epistasis. We propose a new genetic hill climbing method. The proposed method, first, estimates all interactions among parameters and, then, incrementally improves a search point, using a neighborhood that is a subspace spaned by a parameter and the parameters having interactions with it, named epistasis neighborhood. The sampling method in an epistasis neighborhood is UNDX+MGG, which is a real-coded GA showing good performance on epistatic multimodal functions. We confirm that the proposed method shows better performance than conventional GAs on high-dimensional partially-epistatic functions by applying them to some benchmark problems.
Author Takeichi, H.
Mizuguchi, N.
Ono, I.
Ono, N.
Author_xml – sequence: 1
  givenname: H.
  surname: Takeichi
  fullname: Takeichi, H.
  organization: Tokushima Univ., Japan
– sequence: 2
  givenname: N.
  surname: Mizuguchi
  fullname: Mizuguchi, N.
  organization: Tokushima Univ., Japan
– sequence: 3
  givenname: I.
  surname: Ono
  fullname: Ono, I.
  organization: Tokushima Univ., Japan
– sequence: 4
  givenname: N.
  surname: Ono
  fullname: Ono, N.
  organization: Tokushima Univ., Japan
BookMark eNotkM1qwzAQhAVtoU2ae6EXvYBdSbZs6RhM-gOBXtpzkKWVrWJLQVIO7dPXTTOwLMN-O4dZoWsfPCD0QElJKZFP3a4rGSFVSZmUgrIrtCKtINUyNblFm5S-yKKaV5K3dyhv8QAestN4dNOE9eTm3vkBz5DHYLANEduT19kFj8Mxu9n9qLM5pT9MYQ9uGPsQx7DgvUpg8HJ1PkNU57eE1RwW9KiiWlIhpnt0Y9WUYHPZa_T5vPvoXov9-8tbt90XjrY8F7LRpu6lYKKRvVBWUquYZEZobg1vG2UazhqhTW-1Edw2kgEXdWtlS-qaVdUaPf7nOgA4HKObVfw-XIqpfgFd4l0j
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2003.1299812
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 1258 Vol.2
ExternalDocumentID 1299812
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-96cd4b982869b8af91fa292d8c5fd576ad65268cdbfcd85f692e5847f97044233
IEDL.DBID RIE
ISBN 0780378040
9780780378049
IngestDate Wed Jun 26 19:21:04 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-96cd4b982869b8af91fa292d8c5fd576ad65268cdbfcd85f692e5847f97044233
ParticipantIDs ieee_primary_1299812
PublicationCentury 2000
PublicationDate 20030000
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – year: 2003
  text: 20030000
PublicationDecade 2000
PublicationTitle The 2003 Congress on Evolutionary Computation, 2003. CEC '03
PublicationTitleAbbrev CEC
PublicationYear 2003
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453957
Score 1.3348567
Snippet Most conventional genetic algorithms (GAs) for function optimization always search all parameters simultaneously. As the result, the search space size...
SourceID ieee
SourceType Publisher
StartPage 1251
SubjectTerms Design methodology
Encoding
Genetic algorithms
Genetic mutations
Optimization methods
Sampling methods
Topology
Title A genetic hill climbing method for function optimization using a neighborhood based on interactions among parameters
URI https://ieeexplore.ieee.org/document/1299812
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ0-oYHxnDh5t6bs7R0MgxATjQRJupPsiRAED5eKvd2dbajQevPWRNJvttDPfzHzfMHbPdSiywuSehV3cS2KVeigj9ASGIjJ5WihBQHHynI2nydMsnbXYQ8OF0Vq75jPt06Gr5auN3FOqrG99E3IaKXyUI1ZcrSafYkMTKjk5ZM6DmHR1akmn5hwPZcoA-4PhwImB-vUzfwxXcb5l1GGTw6qqlpI3f18KX37-Emz877JPWO-bxQcvjX86ZS29PmOdwxgHqL_qLisfwVoRkRmBSgMg35cri5cXUE2XBhvWArk_eoWwsb-YVc3dBGqaX0ABa8qvWmMiiWQgv6jA3iUlim3Fm9iBG2oEJDS-ogacXY9NR8PXwdirhzF4SxthlB5mUiUCiXWOghcGQ1NEGCkuU6MsaClURsoxUgkjFU9NhpGmEqzBPEhszBafs_Z6s9YXDFAbnlgcE5k4TiKLd0KOicwiExRaZSa-ZF3axPlHpbcxr_fv6u_L1-zYNdi5tMgNa5fbvb61gUIp7pyFfAETN7uB
link.rule.ids 310,311,783,787,792,793,799,4059,4060,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPOgJFYxv5-DRlr7ZPRoCQQXiARJupPsiRCkGysVf78621Gg8eOsjaTbbaWe-mfm-IeSeKp8nqe44BnZRJwpl7DARMIcznwe6E6eSI1AcjZPBNHqexbMaeai4MEop23ymXDy0tXy5FjtMlbWNb2IURwofxBhXFGytKqNighMsOllsTr0QlXVKUafqnO0LlR5rd3tdKwfqlk_9MV7Fepd-g4z26yqaSt7cXc5d8flLsvG_Cz8mrW8eH7xWHuqE1FR2Shr7QQ5QftdNkj-CsSOkMwIWB0C8L1cGMS-gmC8NJrAFdID4EmFtfjKrkr0J2Da_gBQyzLAac0KRZEDPKMHcRS2KTcGc2IIdawQoNb7CFpxti0z7vUl34JTjGJyliTFyhyVCRpwh75xxmmrm6zRggaQi1tLAllQmqB0jJNdC0lgnLFBYhNWs40UmagvPSD1bZ-qcAFOaRgbJBDoMo8AgHp-ySCSB9lIlEx1ekCZu4vyjUNyYl_t3-fflO3I4mIyG8-HT-OWKHNl2O5skuSb1fLNTNyZsyPmttZYvEwa-zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+2003+Congress+on+Evolutionary+Computation%2C+2003.+CEC+%2703&rft.atitle=A+genetic+hill+climbing+method+for+function+optimization+using+a+neighborhood+based+on+interactions+among+parameters&rft.au=Takeichi%2C+H.&rft.au=Mizuguchi%2C+N.&rft.au=Ono%2C+I.&rft.au=Ono%2C+N.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780378049&rft.volume=2&rft.spage=1251&rft.epage=1258+Vol.2&rft_id=info:doi/10.1109%2FCEC.2003.1299812&rft.externalDocID=1299812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378049/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378049/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378049/sc.gif&client=summon&freeimage=true