A genetic hill climbing method for function optimization using a neighborhood based on interactions among parameters
Most conventional genetic algorithms (GAs) for function optimization always search all parameters simultaneously. As the result, the search space size increases exponentially with the number of parameters. Therefore, the search efficiency of these GAs deteriorates in high-dimensional function optimi...
Saved in:
Published in | The 2003 Congress on Evolutionary Computation, 2003. CEC '03 Vol. 2; pp. 1251 - 1258 Vol.2 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most conventional genetic algorithms (GAs) for function optimization always search all parameters simultaneously. As the result, the search space size increases exponentially with the number of parameters. Therefore, the search efficiency of these GAs deteriorates in high-dimensional function optimization because they requires a huge population size and enormous computation time. Generally, in order to find the optima, if a parameter has no interaction with the others, it can be searched independently and, if it has interactions with others, it must be searched with the ones which have interactions with it. We believe that, in many cases, all parameters do not need to be searched simultaneously because many evaluation functions in real-world applications have partially epistasis. We propose a new genetic hill climbing method. The proposed method, first, estimates all interactions among parameters and, then, incrementally improves a search point, using a neighborhood that is a subspace spaned by a parameter and the parameters having interactions with it, named epistasis neighborhood. The sampling method in an epistasis neighborhood is UNDX+MGG, which is a real-coded GA showing good performance on epistatic multimodal functions. We confirm that the proposed method shows better performance than conventional GAs on high-dimensional partially-epistatic functions by applying them to some benchmark problems. |
---|---|
AbstractList | Most conventional genetic algorithms (GAs) for function optimization always search all parameters simultaneously. As the result, the search space size increases exponentially with the number of parameters. Therefore, the search efficiency of these GAs deteriorates in high-dimensional function optimization because they requires a huge population size and enormous computation time. Generally, in order to find the optima, if a parameter has no interaction with the others, it can be searched independently and, if it has interactions with others, it must be searched with the ones which have interactions with it. We believe that, in many cases, all parameters do not need to be searched simultaneously because many evaluation functions in real-world applications have partially epistasis. We propose a new genetic hill climbing method. The proposed method, first, estimates all interactions among parameters and, then, incrementally improves a search point, using a neighborhood that is a subspace spaned by a parameter and the parameters having interactions with it, named epistasis neighborhood. The sampling method in an epistasis neighborhood is UNDX+MGG, which is a real-coded GA showing good performance on epistatic multimodal functions. We confirm that the proposed method shows better performance than conventional GAs on high-dimensional partially-epistatic functions by applying them to some benchmark problems. |
Author | Takeichi, H. Mizuguchi, N. Ono, I. Ono, N. |
Author_xml | – sequence: 1 givenname: H. surname: Takeichi fullname: Takeichi, H. organization: Tokushima Univ., Japan – sequence: 2 givenname: N. surname: Mizuguchi fullname: Mizuguchi, N. organization: Tokushima Univ., Japan – sequence: 3 givenname: I. surname: Ono fullname: Ono, I. organization: Tokushima Univ., Japan – sequence: 4 givenname: N. surname: Ono fullname: Ono, N. organization: Tokushima Univ., Japan |
BookMark | eNotkM1qwzAQhAVtoU2ae6EXvYBdSbZs6RhM-gOBXtpzkKWVrWJLQVIO7dPXTTOwLMN-O4dZoWsfPCD0QElJKZFP3a4rGSFVSZmUgrIrtCKtINUyNblFm5S-yKKaV5K3dyhv8QAestN4dNOE9eTm3vkBz5DHYLANEduT19kFj8Mxu9n9qLM5pT9MYQ9uGPsQx7DgvUpg8HJ1PkNU57eE1RwW9KiiWlIhpnt0Y9WUYHPZa_T5vPvoXov9-8tbt90XjrY8F7LRpu6lYKKRvVBWUquYZEZobg1vG2UazhqhTW-1Edw2kgEXdWtlS-qaVdUaPf7nOgA4HKObVfw-XIqpfgFd4l0j |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CEC.2003.1299812 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 1258 Vol.2 |
ExternalDocumentID | 1299812 |
GroupedDBID | 6IE 6IK 6IL AAJGR AAVQY ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-96cd4b982869b8af91fa292d8c5fd576ad65268cdbfcd85f692e5847f97044233 |
IEDL.DBID | RIE |
ISBN | 0780378040 9780780378049 |
IngestDate | Wed Jun 26 19:21:04 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-96cd4b982869b8af91fa292d8c5fd576ad65268cdbfcd85f692e5847f97044233 |
ParticipantIDs | ieee_primary_1299812 |
PublicationCentury | 2000 |
PublicationDate | 20030000 |
PublicationDateYYYYMMDD | 2003-01-01 |
PublicationDate_xml | – year: 2003 text: 20030000 |
PublicationDecade | 2000 |
PublicationTitle | The 2003 Congress on Evolutionary Computation, 2003. CEC '03 |
PublicationTitleAbbrev | CEC |
PublicationYear | 2003 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000453957 |
Score | 1.3348567 |
Snippet | Most conventional genetic algorithms (GAs) for function optimization always search all parameters simultaneously. As the result, the search space size... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1251 |
SubjectTerms | Design methodology Encoding Genetic algorithms Genetic mutations Optimization methods Sampling methods Topology |
Title | A genetic hill climbing method for function optimization using a neighborhood based on interactions among parameters |
URI | https://ieeexplore.ieee.org/document/1299812 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ0-oYHxnDh5t6bs7R0MgxATjQRJupPsiRAED5eKvd2dbajQevPWRNJvttDPfzHzfMHbPdSiywuSehV3cS2KVeigj9ASGIjJ5WihBQHHynI2nydMsnbXYQ8OF0Vq75jPt06Gr5auN3FOqrG99E3IaKXyUI1ZcrSafYkMTKjk5ZM6DmHR1akmn5hwPZcoA-4PhwImB-vUzfwxXcb5l1GGTw6qqlpI3f18KX37-Emz877JPWO-bxQcvjX86ZS29PmOdwxgHqL_qLisfwVoRkRmBSgMg35cri5cXUE2XBhvWArk_eoWwsb-YVc3dBGqaX0ABa8qvWmMiiWQgv6jA3iUlim3Fm9iBG2oEJDS-ogacXY9NR8PXwdirhzF4SxthlB5mUiUCiXWOghcGQ1NEGCkuU6MsaClURsoxUgkjFU9NhpGmEqzBPEhszBafs_Z6s9YXDFAbnlgcE5k4TiKLd0KOicwiExRaZSa-ZF3axPlHpbcxr_fv6u_L1-zYNdi5tMgNa5fbvb61gUIp7pyFfAETN7uB |
link.rule.ids | 310,311,783,787,792,793,799,4059,4060,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPOgJFYxv5-DRlr7ZPRoCQQXiARJupPsiRCkGysVf78621Gg8eOsjaTbbaWe-mfm-IeSeKp8nqe44BnZRJwpl7DARMIcznwe6E6eSI1AcjZPBNHqexbMaeai4MEop23ymXDy0tXy5FjtMlbWNb2IURwofxBhXFGytKqNighMsOllsTr0QlXVKUafqnO0LlR5rd3tdKwfqlk_9MV7Fepd-g4z26yqaSt7cXc5d8flLsvG_Cz8mrW8eH7xWHuqE1FR2Shr7QQ5QftdNkj-CsSOkMwIWB0C8L1cGMS-gmC8NJrAFdID4EmFtfjKrkr0J2Da_gBQyzLAac0KRZEDPKMHcRS2KTcGc2IIdawQoNb7CFpxti0z7vUl34JTjGJyliTFyhyVCRpwh75xxmmrm6zRggaQi1tLAllQmqB0jJNdC0lgnLFBYhNWs40UmagvPSD1bZ-qcAFOaRgbJBDoMo8AgHp-ySCSB9lIlEx1ekCZu4vyjUNyYl_t3-fflO3I4mIyG8-HT-OWKHNl2O5skuSb1fLNTNyZsyPmttZYvEwa-zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+2003+Congress+on+Evolutionary+Computation%2C+2003.+CEC+%2703&rft.atitle=A+genetic+hill+climbing+method+for+function+optimization+using+a+neighborhood+based+on+interactions+among+parameters&rft.au=Takeichi%2C+H.&rft.au=Mizuguchi%2C+N.&rft.au=Ono%2C+I.&rft.au=Ono%2C+N.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780378049&rft.volume=2&rft.spage=1251&rft.epage=1258+Vol.2&rft_id=info:doi/10.1109%2FCEC.2003.1299812&rft.externalDocID=1299812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378049/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378049/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780378049/sc.gif&client=summon&freeimage=true |