ESWT - tracking organs during focused ultrasound surgery
We report here our results in a multi-sensor setup reproducing the conditions of an automated focused ultrasound surgery environment. The aim is to continuously predict the position of an internal organ (here the liver) under guided and non-guided free breathing, with the accuracy required by surger...
Saved in:
Published in | 2012 IEEE International Workshop on Machine Learning for Signal Processing pp. 1 - 6 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 1467310247 9781467310246 |
ISSN | 1551-2541 |
DOI | 10.1109/MLSP.2012.6349746 |
Cover
Abstract | We report here our results in a multi-sensor setup reproducing the conditions of an automated focused ultrasound surgery environment. The aim is to continuously predict the position of an internal organ (here the liver) under guided and non-guided free breathing, with the accuracy required by surgery. We have performed experiments with 16 healthy human subjects, two of those taking part in full-scale experiments involving a 3 Tesla MRI machine recording a volume containing the liver. For the other 14 subjects we have used the optical tracker as a surrogate target. All subjects where volunteers who agreed to participate in the experiments after being thoroughly informed about it. For the MRI sessions we have analyzed semi-automatically offline the images in order to obtain the ground truth, the true position of the selected feature of the liver. The results we have obtained with continuously updated random forest models are very promising, we have obtained good prediction-target correlation coefficients for the surrogate targets (0.71 ± 0.1) and excellent for the real targets in the MRI experiments (over 0.91), despite being limited to a lower model update frequency, once every 6.16 seconds. |
---|---|
AbstractList | We report here our results in a multi-sensor setup reproducing the conditions of an automated focused ultrasound surgery environment. The aim is to continuously predict the position of an internal organ (here the liver) under guided and non-guided free breathing, with the accuracy required by surgery. We have performed experiments with 16 healthy human subjects, two of those taking part in full-scale experiments involving a 3 Tesla MRI machine recording a volume containing the liver. For the other 14 subjects we have used the optical tracker as a surrogate target. All subjects where volunteers who agreed to participate in the experiments after being thoroughly informed about it. For the MRI sessions we have analyzed semi-automatically offline the images in order to obtain the ground truth, the true position of the selected feature of the liver. The results we have obtained with continuously updated random forest models are very promising, we have obtained good prediction-target correlation coefficients for the surrogate targets (0.71 ± 0.1) and excellent for the real targets in the MRI experiments (over 0.91), despite being limited to a lower model update frequency, once every 6.16 seconds. |
Author | Grozea, C. Lubke, D. Hirsch, J. Schiewe, M. Gerhardt, J. Schumann, C. Dingeldey, F. |
Author_xml | – sequence: 1 givenname: C. surname: Grozea fullname: Grozea, C. email: cristian.grozea@brainsignals.de organization: Fraunhofer Inst. FIRST, Berlin, Germany – sequence: 2 givenname: D. surname: Lubke fullname: Lubke, D. organization: Fraunhofer Inst. FIRST, Berlin, Germany – sequence: 3 givenname: F. surname: Dingeldey fullname: Dingeldey, F. organization: Fraunhofer Inst. FIRST, Berlin, Germany – sequence: 4 givenname: M. surname: Schiewe fullname: Schiewe, M. organization: Fraunhofer Inst. FIRST, Berlin, Germany – sequence: 5 givenname: J. surname: Gerhardt fullname: Gerhardt, J. organization: Fraunhofer Inst. FIRST, Berlin, Germany – sequence: 6 givenname: C. surname: Schumann fullname: Schumann, C. organization: Fraunhofer MEVIS, Bremen, Germany – sequence: 7 givenname: J. surname: Hirsch fullname: Hirsch, J. organization: Fraunhofer MEVIS, Bremen, Germany |
BookMark | eNo1j19LwzAUxSNOcJv9AOJLvkBrbpL2No8y5h-oKGzi40iT21KdrSTrw769Fed5OfwOhwNnwWb90BNj1yAyAGFun6vNayYFyKxQ2qAuzlhisARdoAIhC3HOFv-gccbmkOeQylzDJUti_BCTSjC6gDkr15v3LU_5IVj32fUtH0Jr-8j9GH6pGdwYyfNxPxXiMPaexzG0FI5X7KKx-0jJyZfs7X69XT2m1cvD0-quSjvA_JAacIIcgXeWCm3AGukUEjWIAnPjpsjVSijUYFB6p9HXJdZa1ZacUaSW7OZvtyOi3Xfovmw47k7H1Q_yoEtQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/MLSP.2012.6349746 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781467310260 1467310263 9781467310253 1467310255 |
EndPage | 6 |
ExternalDocumentID | 6349746 |
Genre | orig-research |
GroupedDBID | 29M 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-91c0ece1dcae6491a92c37eef770759c491cb303741972dc47db87b43baec93e3 |
IEDL.DBID | RIE |
ISBN | 1467310247 9781467310246 |
ISSN | 1551-2541 |
IngestDate | Wed Aug 27 03:20:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-91c0ece1dcae6491a92c37eef770759c491cb303741972dc47db87b43baec93e3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6349746 |
PublicationCentury | 2000 |
PublicationDate | 2012-Sept. |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2012 IEEE International Workshop on Machine Learning for Signal Processing |
PublicationTitleAbbrev | MLSP |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000819461 ssj0042311 |
Score | 1.8252236 |
Snippet | We report here our results in a multi-sensor setup reproducing the conditions of an automated focused ultrasound surgery environment. The aim is to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | breathing FUS HIFU Liver Magnetic resonance imaging minimally invasive MRgFUS MRI Optical imaging prediction sensor fusion Sensors Surgery Target tracking Tumors ultrasound |
Title | ESWT - tracking organs during focused ultrasound surgery |
URI | https://ieeexplore.ieee.org/document/6349746 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6AkydUMH6nB49urGtp17OBECOGBIjcSNt1idGAYdvFX-_bdmA0HrxtS5N2fbe-38-D0F0uKAG7gDgoRBkxmhZRxnQeKZ0l0jBmrE_FTJ_5ZMkeV8NVC90femGstb74zMbu0ufy862pXahswCkD85e3URs-s9CrdYinONXmodHCKQxWAglYqUMSgRNEfFMXh5WBUhJ7rKfmnjfpTpLIwfRpPnMVX2nczPaDdsVrnXEXTffrDcUmb3Fd6dh8_oJy_O8LHaP-d38fnh001wlq2c0p6u4JHnDzv_dQNpq_LHCEq50yLqSOPQdUiUNvIy5ggtLmuH6HAaXjZ8Jl6LLuo-V4tHiYRA3VQvQK9kMFR55JrLEkN8pyJomSqaHC2kIIsClAaDBAU4dV42jKcsNErjOhGdXKGkktPUOdzXZjzxFmZiiE0oWWXDECHjYHn46opEhNJvWQXaCe24j1R0DTWDd7cPn34yt05IQRqrquUafa1fYGzIBK33r5fwEZwKlQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_Doxsq6djsbCCojJEDkRtquS4wGDNsu_vW-tgOj8eBtW5q0a7e-r--973sI3WU8JIALiJFCTDwa9nIvpjLzhIyDRFGqtA3FpGM2nNOnRbRooPsdF0ZrbZPPtG8ubSw_W6vKuMq6LKQAf9ke2ge7TyPH1tp5VIxxs-Jobh8GnECcWmpEPDgGEUvrYjA2MEt8q_ZU37M64EmCpJuOphOT89Xz6_5-FF6xdmfQQul2xC7d5M2vSumrz19ijv99pSPU-Wb44cnOdh2jhl6doNa2xAOu__g2ivvTlxn2cLkRyjjVsa0CVWDHbsQ5dFDoDFfv0KAwFZpw4XjWHTQf9GcPQ68utuC9AoIoYdNTgVaaZEpoRhMikp4KudY554AqYNmggQyNWo0pVJYpyjMZc0lDKbRKQh2eouZqvdJnCFMVcS5kLhMmKIEzNoNTHRFB3lNxIiN6jtpmIpYfTk9jWc_Bxd-Pb9HBcJaOlqPH8fMlOjQL43K8rlCz3FT6GkBBKW_st_AFMIysnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Workshop+on+Machine+Learning+for+Signal+Processing&rft.atitle=ESWT+-+tracking+organs+during+focused+ultrasound+surgery&rft.au=Grozea%2C+C.&rft.au=Lubke%2C+D.&rft.au=Dingeldey%2C+F.&rft.au=Schiewe%2C+M.&rft.date=2012-09-01&rft.pub=IEEE&rft.isbn=9781467310246&rft.issn=1551-2541&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP.2012.6349746&rft.externalDocID=6349746 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-2541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-2541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-2541&client=summon |