ESWT - tracking organs during focused ultrasound surgery

We report here our results in a multi-sensor setup reproducing the conditions of an automated focused ultrasound surgery environment. The aim is to continuously predict the position of an internal organ (here the liver) under guided and non-guided free breathing, with the accuracy required by surger...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE International Workshop on Machine Learning for Signal Processing pp. 1 - 6
Main Authors Grozea, C., Lubke, D., Dingeldey, F., Schiewe, M., Gerhardt, J., Schumann, C., Hirsch, J.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2012
Subjects
Online AccessGet full text
ISBN1467310247
9781467310246
ISSN1551-2541
DOI10.1109/MLSP.2012.6349746

Cover

Abstract We report here our results in a multi-sensor setup reproducing the conditions of an automated focused ultrasound surgery environment. The aim is to continuously predict the position of an internal organ (here the liver) under guided and non-guided free breathing, with the accuracy required by surgery. We have performed experiments with 16 healthy human subjects, two of those taking part in full-scale experiments involving a 3 Tesla MRI machine recording a volume containing the liver. For the other 14 subjects we have used the optical tracker as a surrogate target. All subjects where volunteers who agreed to participate in the experiments after being thoroughly informed about it. For the MRI sessions we have analyzed semi-automatically offline the images in order to obtain the ground truth, the true position of the selected feature of the liver. The results we have obtained with continuously updated random forest models are very promising, we have obtained good prediction-target correlation coefficients for the surrogate targets (0.71 ± 0.1) and excellent for the real targets in the MRI experiments (over 0.91), despite being limited to a lower model update frequency, once every 6.16 seconds.
AbstractList We report here our results in a multi-sensor setup reproducing the conditions of an automated focused ultrasound surgery environment. The aim is to continuously predict the position of an internal organ (here the liver) under guided and non-guided free breathing, with the accuracy required by surgery. We have performed experiments with 16 healthy human subjects, two of those taking part in full-scale experiments involving a 3 Tesla MRI machine recording a volume containing the liver. For the other 14 subjects we have used the optical tracker as a surrogate target. All subjects where volunteers who agreed to participate in the experiments after being thoroughly informed about it. For the MRI sessions we have analyzed semi-automatically offline the images in order to obtain the ground truth, the true position of the selected feature of the liver. The results we have obtained with continuously updated random forest models are very promising, we have obtained good prediction-target correlation coefficients for the surrogate targets (0.71 ± 0.1) and excellent for the real targets in the MRI experiments (over 0.91), despite being limited to a lower model update frequency, once every 6.16 seconds.
Author Grozea, C.
Lubke, D.
Hirsch, J.
Schiewe, M.
Gerhardt, J.
Schumann, C.
Dingeldey, F.
Author_xml – sequence: 1
  givenname: C.
  surname: Grozea
  fullname: Grozea, C.
  email: cristian.grozea@brainsignals.de
  organization: Fraunhofer Inst. FIRST, Berlin, Germany
– sequence: 2
  givenname: D.
  surname: Lubke
  fullname: Lubke, D.
  organization: Fraunhofer Inst. FIRST, Berlin, Germany
– sequence: 3
  givenname: F.
  surname: Dingeldey
  fullname: Dingeldey, F.
  organization: Fraunhofer Inst. FIRST, Berlin, Germany
– sequence: 4
  givenname: M.
  surname: Schiewe
  fullname: Schiewe, M.
  organization: Fraunhofer Inst. FIRST, Berlin, Germany
– sequence: 5
  givenname: J.
  surname: Gerhardt
  fullname: Gerhardt, J.
  organization: Fraunhofer Inst. FIRST, Berlin, Germany
– sequence: 6
  givenname: C.
  surname: Schumann
  fullname: Schumann, C.
  organization: Fraunhofer MEVIS, Bremen, Germany
– sequence: 7
  givenname: J.
  surname: Hirsch
  fullname: Hirsch, J.
  organization: Fraunhofer MEVIS, Bremen, Germany
BookMark eNo1j19LwzAUxSNOcJv9AOJLvkBrbpL2No8y5h-oKGzi40iT21KdrSTrw769Fed5OfwOhwNnwWb90BNj1yAyAGFun6vNayYFyKxQ2qAuzlhisARdoAIhC3HOFv-gccbmkOeQylzDJUti_BCTSjC6gDkr15v3LU_5IVj32fUtH0Jr-8j9GH6pGdwYyfNxPxXiMPaexzG0FI5X7KKx-0jJyZfs7X69XT2m1cvD0-quSjvA_JAacIIcgXeWCm3AGukUEjWIAnPjpsjVSijUYFB6p9HXJdZa1ZacUaSW7OZvtyOi3Xfovmw47k7H1Q_yoEtQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MLSP.2012.6349746
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781467310260
1467310263
9781467310253
1467310255
EndPage 6
ExternalDocumentID 6349746
Genre orig-research
GroupedDBID 29M
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-91c0ece1dcae6491a92c37eef770759c491cb303741972dc47db87b43baec93e3
IEDL.DBID RIE
ISBN 1467310247
9781467310246
ISSN 1551-2541
IngestDate Wed Aug 27 03:20:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-91c0ece1dcae6491a92c37eef770759c491cb303741972dc47db87b43baec93e3
PageCount 6
ParticipantIDs ieee_primary_6349746
PublicationCentury 2000
PublicationDate 2012-Sept.
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-Sept.
PublicationDecade 2010
PublicationTitle 2012 IEEE International Workshop on Machine Learning for Signal Processing
PublicationTitleAbbrev MLSP
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000819461
ssj0042311
Score 1.8252236
Snippet We report here our results in a multi-sensor setup reproducing the conditions of an automated focused ultrasound surgery environment. The aim is to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms breathing
FUS
HIFU
Liver
Magnetic resonance imaging
minimally invasive
MRgFUS
MRI
Optical imaging
prediction
sensor fusion
Sensors
Surgery
Target tracking
Tumors
ultrasound
Title ESWT - tracking organs during focused ultrasound surgery
URI https://ieeexplore.ieee.org/document/6349746
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6AkydUMH6nB49urGtp17OBECOGBIjcSNt1idGAYdvFX-_bdmA0HrxtS5N2fbe-38-D0F0uKAG7gDgoRBkxmhZRxnQeKZ0l0jBmrE_FTJ_5ZMkeV8NVC90femGstb74zMbu0ufy862pXahswCkD85e3URs-s9CrdYinONXmodHCKQxWAglYqUMSgRNEfFMXh5WBUhJ7rKfmnjfpTpLIwfRpPnMVX2nczPaDdsVrnXEXTffrDcUmb3Fd6dh8_oJy_O8LHaP-d38fnh001wlq2c0p6u4JHnDzv_dQNpq_LHCEq50yLqSOPQdUiUNvIy5ggtLmuH6HAaXjZ8Jl6LLuo-V4tHiYRA3VQvQK9kMFR55JrLEkN8pyJomSqaHC2kIIsClAaDBAU4dV42jKcsNErjOhGdXKGkktPUOdzXZjzxFmZiiE0oWWXDECHjYHn46opEhNJvWQXaCe24j1R0DTWDd7cPn34yt05IQRqrquUafa1fYGzIBK33r5fwEZwKlQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_Doxsq6djsbCCojJEDkRtquS4wGDNsu_vW-tgOj8eBtW5q0a7e-r--973sI3WU8JIALiJFCTDwa9nIvpjLzhIyDRFGqtA3FpGM2nNOnRbRooPsdF0ZrbZPPtG8ubSw_W6vKuMq6LKQAf9ke2ge7TyPH1tp5VIxxs-Jobh8GnECcWmpEPDgGEUvrYjA2MEt8q_ZU37M64EmCpJuOphOT89Xz6_5-FF6xdmfQQul2xC7d5M2vSumrz19ijv99pSPU-Wb44cnOdh2jhl6doNa2xAOu__g2ivvTlxn2cLkRyjjVsa0CVWDHbsQ5dFDoDFfv0KAwFZpw4XjWHTQf9GcPQ68utuC9AoIoYdNTgVaaZEpoRhMikp4KudY554AqYNmggQyNWo0pVJYpyjMZc0lDKbRKQh2eouZqvdJnCFMVcS5kLhMmKIEzNoNTHRFB3lNxIiN6jtpmIpYfTk9jWc_Bxd-Pb9HBcJaOlqPH8fMlOjQL43K8rlCz3FT6GkBBKW_st_AFMIysnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Workshop+on+Machine+Learning+for+Signal+Processing&rft.atitle=ESWT+-+tracking+organs+during+focused+ultrasound+surgery&rft.au=Grozea%2C+C.&rft.au=Lubke%2C+D.&rft.au=Dingeldey%2C+F.&rft.au=Schiewe%2C+M.&rft.date=2012-09-01&rft.pub=IEEE&rft.isbn=9781467310246&rft.issn=1551-2541&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP.2012.6349746&rft.externalDocID=6349746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-2541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-2541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-2541&client=summon