Survey on Recent Progresses of Semantic Image Segmentation with CNNs
Convolutional neural networks (CNNs) have been the mainstream in many computer vision tasks, such as image classification, object detection, face recognition and so on. We survey the state-of-the-art results on Pascal VOC 2012 semantic segmentation challenge which has made great progresses in 2015....
Saved in:
Published in | 2016 International Conference on Virtual Reality and Visualization (ICVRV) pp. 158 - 163 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Convolutional neural networks (CNNs) have been the mainstream in many computer vision tasks, such as image classification, object detection, face recognition and so on. We survey the state-of-the-art results on Pascal VOC 2012 semantic segmentation challenge which has made great progresses in 2015. We investigate the effectiveness of the new layers, structures and strategies behind these results proposed to produce more refined segmentation. Their main contributions focus on utilizing more structures and contextual information in the image or feature spaces. Most of these approaches serve for several independent stages in semantic image segmentation. In this paper, we discuss possible architectures to incorporate existing structures and strategies. Finally possible directions on enhancing CNNs to segment given semantic objects are proposed. |
---|---|
AbstractList | Convolutional neural networks (CNNs) have been the mainstream in many computer vision tasks, such as image classification, object detection, face recognition and so on. We survey the state-of-the-art results on Pascal VOC 2012 semantic segmentation challenge which has made great progresses in 2015. We investigate the effectiveness of the new layers, structures and strategies behind these results proposed to produce more refined segmentation. Their main contributions focus on utilizing more structures and contextual information in the image or feature spaces. Most of these approaches serve for several independent stages in semantic image segmentation. In this paper, we discuss possible architectures to incorporate existing structures and strategies. Finally possible directions on enhancing CNNs to segment given semantic objects are proposed. |
Author | Qichuan Geng Zhong Zhou |
Author_xml | – sequence: 1 surname: Qichuan Geng fullname: Qichuan Geng email: zhaokefirst@126.com organization: State Key Lab. of Virtual Reality Technol. & Syst., Beihang Univ., Beijing, China – sequence: 2 surname: Zhong Zhou fullname: Zhong Zhou email: zz@buaa.edu.cn organization: State Key Lab. of Virtual Reality Technol. & Syst., Beihang Univ., Beijing, China |
BookMark | eNotjL1OwzAURo0EA5SOTCx-gQTfXDu2RxT-IlVt1ULXynGugyWSoCSA-vZEgunTkc75rth513fE2A2IFEDYu7I47A5pJiBPUZ6xpdUGlLBCgTHqkj3sv4ZvOvG-4zvy1E18O_TNQONII-8D31Pruil6XrauoRmbdpbcFOfgJ07vvFivx2t2EdzHSMv_XbC3p8fX4iVZbZ7L4n6VRNBqSqygUKtKQhAapBLS1RK9FwFDZnMJMnOQS0dQk8eaclNlppJWh6pGREJcsNu_30hEx88htm44HbVFA8biL1BHRx4 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICVRV.2016.34 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509051885 1509051880 |
EndPage | 163 |
ExternalDocumentID | 7938189 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i175t-90efd5b41f0714504ad43cc0f3f2964142a164ae1dec3de68b28b497fbd333e33 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:52 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-90efd5b41f0714504ad43cc0f3f2964142a164ae1dec3de68b28b497fbd333e33 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7938189 |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2016 International Conference on Virtual Reality and Visualization (ICVRV) |
PublicationTitleAbbrev | ICVRV |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.651961 |
Snippet | Convolutional neural networks (CNNs) have been the mainstream in many computer vision tasks, such as image classification, object detection, face recognition... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 158 |
SubjectTerms | CNN Computer architecture Feature extraction Image segmentation Message passing Neural networks Pascal VOC 2012 challenge Semantic image segmentation Semantics Training |
Title | Survey on Recent Progresses of Semantic Image Segmentation with CNNs |
URI | https://ieeexplore.ieee.org/document/7938189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjzaMWi3whklYAIxIoQb6Y9XQwybgc1E_3pfNwRjPHhbl3Xr-pZ972vf9x4hNxqd7k4YORZKEzIRA2fIsyLW1ha5DzhlrBcKj8bxYCoe5tG8Qm53WhgAKILPIPCHxV6-TU3ul8qa-C0hvnSrpIrErdRq7dNmNoe92dPMB2vFgS-D_KNYSoEV_UMy-n5KGSLyGuSZDsznrwSM_x3GEWnsVXn0cYc3x6QCSZ3cTfL1O3zQNKHoAWI_f0nBoWFDU0cnsMK5Wxo6XOGfA5svq63aKKF-DZb2xuNNg0z798-9AdtWRmBLhPuMdUNwNtKi5bz-KAqFsoIbEzru_DZqS7QV0iAFLQuGW4g7ut1Bq0inLeccOD8htSRN4JRQxaWJwEip0BHsCryTtELFkiv0hbRxZ6TuZ2DxVia_WGxf_vzv0xfkwBugDMK6JLVsncMVonamrwtzfQF86Jp- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSkBoxv9-DRlsJuWzijBBQaI49wI_uYNcTQGmhN9Nc72yIY48Hb7qb76E7Tb2Z3vhlCbiQq3U3PN44XKs_hATAH7SzfaUiNtg8YobQlCg-ioDvmD1N_WiK3Gy4MAOTOZ-DaYn6XrxOV2aOyGn5LiC-tHbKLuO83CrbWNnBmrdeePE-su1bg2kTIP9Kl5GjROSCD73kKJ5FXN0ulqz5_hWD870IOSXXLy6NPG8Q5IiWIK-RumC3f4YMmMUUdEPvZR3IrGlY0MXQIC9y9uaK9Bf47sPqyWPONYmpPYWk7ilZVMu7cj9pdZ50bwZkj4KdOywOjfcnrxjKQfI8LzZlSnmHGXqTWeUOgISSgrkExDUFTNpool9BIzRgDxo5JOU5iOCFUsFD5oMJQoCrY4jhSqLkIQiZQG5LKnJKK3YHZWxH-YrZ--bO_m6_JXnc06M_6vejxnOxbYRQuWReknC4zuEQMT-VVLrovvj2dyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Virtual+Reality+and+Visualization+%28ICVRV%29&rft.atitle=Survey+on+Recent+Progresses+of+Semantic+Image+Segmentation+with+CNNs&rft.au=Qichuan+Geng&rft.au=Zhong+Zhou&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=158&rft.epage=163&rft_id=info:doi/10.1109%2FICVRV.2016.34&rft.externalDocID=7938189 |