Wavelet image compression by using hybrid kernel SVM
In this paper, we proposed a way through combining the support vector machines (SVM) with hybrid kernel and wavelet transform to compress the image. SVM regression could learn dependency from training data and realized compression by using fewer training point (support vectors) to represent the orig...
Saved in:
Published in | 2008 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 3056 - 3060 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2008
|
Subjects | |
Online Access | Get full text |
ISBN | 1424420954 9781424420957 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2008.4620932 |
Cover
Abstract | In this paper, we proposed a way through combining the support vector machines (SVM) with hybrid kernel and wavelet transform to compress the image. SVM regression could learn dependency from training data and realized compression by using fewer training point (support vectors) to represent the original data and eliminate the redundancy. Wavelet coefficients could be compressed based on this feature. Further more, the hybrid kernel applied can enhance the compress efficient and improve the picture quality by controlling the VC-dimension (Tan, 2004) of SVM. At last, we use the arithmetic coding to encode the dates from the output of the SVM and finish the image compression. |
---|---|
AbstractList | In this paper, we proposed a way through combining the support vector machines (SVM) with hybrid kernel and wavelet transform to compress the image. SVM regression could learn dependency from training data and realized compression by using fewer training point (support vectors) to represent the original data and eliminate the redundancy. Wavelet coefficients could be compressed based on this feature. Further more, the hybrid kernel applied can enhance the compress efficient and improve the picture quality by controlling the VC-dimension (Tan, 2004) of SVM. At last, we use the arithmetic coding to encode the dates from the output of the SVM and finish the image compression. |
Author | Lei Li Ling-Ye Nie Jia-Ming Chen |
Author_xml | – sequence: 1 surname: Jia-Ming Chen fullname: Jia-Ming Chen organization: Autom. Instn., Univ. of Posts & Telecommun., Nanjing – sequence: 2 surname: Lei Li fullname: Lei Li organization: Autom. Instn., Univ. of Posts & Telecommun., Nanjing – sequence: 3 surname: Ling-Ye Nie fullname: Ling-Ye Nie organization: Autom. Instn., Univ. of Posts & Telecommun., Nanjing |
BookMark | eNo1kMtOwzAURI1oJZqSH4CNfyDh-hHHXqKIR6VULHjuqsS-KYY0qeKClL8niDKb0SxmdDQRmXV9h4RcMEgZA3O1KtZlkXIAnUrFwQh-QmKTaya5lFNW8pRE_yGTM7LgTEHChHibk-i3ZwBkzs5IHMIHTBImU4IviHytvrHFA_W7aovU9rv9gCH4vqP1SL-C77b0fawH7-gnDh229PFlfU7mTdUGjI--JM-3N0_FfVI-3K2K6zLxLM8OibagM-4w0woaNIw3zk6ovFK5qrRDW0usgYGwWmGjnbTcAldOWKulU0osyeXfrkfEzX6YGIdxc3xA_ABQXkv9 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2008.4620932 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781424420964 1424420962 |
EndPage | 3060 |
ExternalDocumentID | 4620932 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-8c0852de5860fe912fdc9642a676a8decb4eb0103c86ef8d4c2c026d3cc84d663 |
IEDL.DBID | RIE |
ISBN | 1424420954 9781424420957 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 01:39:27 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008900471 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-8c0852de5860fe912fdc9642a676a8decb4eb0103c86ef8d4c2c026d3cc84d663 |
PageCount | 5 |
ParticipantIDs | ieee_primary_4620932 |
PublicationCentury | 2000 |
PublicationDate | 2008-July |
PublicationDateYYYYMMDD | 2008-07-01 |
PublicationDate_xml | – month: 07 year: 2008 text: 2008-July |
PublicationDecade | 2000 |
PublicationTitle | 2008 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2008 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000395632 ssj0000744891 |
Score | 1.5456823 |
Snippet | In this paper, we proposed a way through combining the support vector machines (SVM) with hybrid kernel and wavelet transform to compress the image. SVM... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3056 |
SubjectTerms | Hybrid Kernel Image coding Image Compression Kernel Polynomials Support vector machines Transforms VC-dimension Wavelet domain Wavelet Transform Wavelet transforms |
Title | Wavelet image compression by using hybrid kernel SVM |
URI | https://ieeexplore.ieee.org/document/4620932 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwFLRKJ6YCLeJbHhhJ6yS2k8wVVUEEIUGhW2U_21ABKarSofx6bCcpAjGwxRmSOPHHvZe7dwidE6ZiQYQJFFDjslVxIAmwQAlgJspkYrydT37LxxN6PWXTFrrYaGG01p58pvvu0P_LVwtYuVTZgPLIBuB2wd2yw6zSam3yKSS2SL_WSPp2YgMPb5gXhZwENhSbNrouexFGm3JPdTtpBDUkG1wN85thRbOs7_jDesXvPKMOyptnrggnr_1VKfvw-auc4387tYN63xo_fLfZvXZRSxd7qNOYPOB6zncRfRLOm6LE83e79GBHQa-oswWWa-xo88_4Ze10X_hVLwv9hu8f8x6ajC4fhuOgtloI5hY_lEEKFnpFSrOUE6OzMDIKMhuaCJ5wkSoNkmrpLCEg5dqkikIENnpTMUBKlUUt-6hdLAp9gHBEROLqdjnwRhUwqUMG3EAowjhUTB6irnsJs4-qmsas7v_R36eP0XbF0HAE2RPULpcrfWphQCnP_Pf_AsYUqYY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRQbe1-3EmElBGTATlRtrXVgk6DBkH_Ott9wOj8eBt3WFbl63ve6_f9z6ErgmTPidcOxKottUq3xEEmCM5MO3FItS5nU8yCvoTejdl0xq62WphlFI5-Uy17WG-ly-XsLalsg4NPJOAmwV3x8R9ygq11raiQnyD9UuVZD4OTeqRW-Z5bkAck4xNK2WXuQyjVcOnchxWkhoSdwbdZNgtiJblPX-Yr-Sxp9dASfXUBeVk0V5nog2fvxo6_nda-6j1rfLDD9v4dYBqKj1EjcrmAZd_fRPRZ27dKTI8fzeLD7Yk9II8m2KxwZY4_4JfN1b5hRdqlao3_PiUtNCkdzvu9p3SbMGZGwSROREY8OVJxaKAaBW7npYQm-SEB2HAI6lAUCWsKQREgdKRpOCByd-kDxBRaXDLEaqny1QdI-wRHtrOXRa-UQlMKJdBoMHlru9KJk5Q076E2UfRT2NWzv_079NXaLc_Toaz4WB0f4b2Cr6Gpcueo3q2WqsLAwoycZl_C1_hUKzT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Wavelet+image+compression+by+using+hybrid+kernel+SVM&rft.au=Jia-Ming+Chen&rft.au=Lei+Li&rft.au=Ling-Ye+Nie&rft.date=2008-07-01&rft.pub=IEEE&rft.isbn=9781424420957&rft.issn=2160-133X&rft.volume=5&rft.spage=3056&rft.epage=3060&rft_id=info:doi/10.1109%2FICMLC.2008.4620932&rft.externalDocID=4620932 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |