Wavelet image compression by using hybrid kernel SVM

In this paper, we proposed a way through combining the support vector machines (SVM) with hybrid kernel and wavelet transform to compress the image. SVM regression could learn dependency from training data and realized compression by using fewer training point (support vectors) to represent the orig...

Full description

Saved in:
Bibliographic Details
Published in2008 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 3056 - 3060
Main Authors Jia-Ming Chen, Lei Li, Ling-Ye Nie
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2008
Subjects
Online AccessGet full text
ISBN1424420954
9781424420957
ISSN2160-133X
DOI10.1109/ICMLC.2008.4620932

Cover

Abstract In this paper, we proposed a way through combining the support vector machines (SVM) with hybrid kernel and wavelet transform to compress the image. SVM regression could learn dependency from training data and realized compression by using fewer training point (support vectors) to represent the original data and eliminate the redundancy. Wavelet coefficients could be compressed based on this feature. Further more, the hybrid kernel applied can enhance the compress efficient and improve the picture quality by controlling the VC-dimension (Tan, 2004) of SVM. At last, we use the arithmetic coding to encode the dates from the output of the SVM and finish the image compression.
AbstractList In this paper, we proposed a way through combining the support vector machines (SVM) with hybrid kernel and wavelet transform to compress the image. SVM regression could learn dependency from training data and realized compression by using fewer training point (support vectors) to represent the original data and eliminate the redundancy. Wavelet coefficients could be compressed based on this feature. Further more, the hybrid kernel applied can enhance the compress efficient and improve the picture quality by controlling the VC-dimension (Tan, 2004) of SVM. At last, we use the arithmetic coding to encode the dates from the output of the SVM and finish the image compression.
Author Lei Li
Ling-Ye Nie
Jia-Ming Chen
Author_xml – sequence: 1
  surname: Jia-Ming Chen
  fullname: Jia-Ming Chen
  organization: Autom. Instn., Univ. of Posts & Telecommun., Nanjing
– sequence: 2
  surname: Lei Li
  fullname: Lei Li
  organization: Autom. Instn., Univ. of Posts & Telecommun., Nanjing
– sequence: 3
  surname: Ling-Ye Nie
  fullname: Ling-Ye Nie
  organization: Autom. Instn., Univ. of Posts & Telecommun., Nanjing
BookMark eNo1kMtOwzAURI1oJZqSH4CNfyDh-hHHXqKIR6VULHjuqsS-KYY0qeKClL8niDKb0SxmdDQRmXV9h4RcMEgZA3O1KtZlkXIAnUrFwQh-QmKTaya5lFNW8pRE_yGTM7LgTEHChHibk-i3ZwBkzs5IHMIHTBImU4IviHytvrHFA_W7aovU9rv9gCH4vqP1SL-C77b0fawH7-gnDh229PFlfU7mTdUGjI--JM-3N0_FfVI-3K2K6zLxLM8OibagM-4w0woaNIw3zk6ovFK5qrRDW0usgYGwWmGjnbTcAldOWKulU0osyeXfrkfEzX6YGIdxc3xA_ABQXkv9
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2008.4620932
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424420964
1424420962
EndPage 3060
ExternalDocumentID 4620932
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-8c0852de5860fe912fdc9642a676a8decb4eb0103c86ef8d4c2c026d3cc84d663
IEDL.DBID RIE
ISBN 1424420954
9781424420957
ISSN 2160-133X
IngestDate Wed Aug 27 01:39:27 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008900471
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-8c0852de5860fe912fdc9642a676a8decb4eb0103c86ef8d4c2c026d3cc84d663
PageCount 5
ParticipantIDs ieee_primary_4620932
PublicationCentury 2000
PublicationDate 2008-July
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-July
PublicationDecade 2000
PublicationTitle 2008 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000395632
ssj0000744891
Score 1.5456823
Snippet In this paper, we proposed a way through combining the support vector machines (SVM) with hybrid kernel and wavelet transform to compress the image. SVM...
SourceID ieee
SourceType Publisher
StartPage 3056
SubjectTerms Hybrid Kernel
Image coding
Image Compression
Kernel
Polynomials
Support vector machines
Transforms
VC-dimension
Wavelet domain
Wavelet Transform
Wavelet transforms
Title Wavelet image compression by using hybrid kernel SVM
URI https://ieeexplore.ieee.org/document/4620932
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwFLRKJ6YCLeJbHhhJ6yS2k8wVVUEEIUGhW2U_21ABKarSofx6bCcpAjGwxRmSOPHHvZe7dwidE6ZiQYQJFFDjslVxIAmwQAlgJspkYrydT37LxxN6PWXTFrrYaGG01p58pvvu0P_LVwtYuVTZgPLIBuB2wd2yw6zSam3yKSS2SL_WSPp2YgMPb5gXhZwENhSbNrouexFGm3JPdTtpBDUkG1wN85thRbOs7_jDesXvPKMOyptnrggnr_1VKfvw-auc4387tYN63xo_fLfZvXZRSxd7qNOYPOB6zncRfRLOm6LE83e79GBHQa-oswWWa-xo88_4Ze10X_hVLwv9hu8f8x6ajC4fhuOgtloI5hY_lEEKFnpFSrOUE6OzMDIKMhuaCJ5wkSoNkmrpLCEg5dqkikIENnpTMUBKlUUt-6hdLAp9gHBEROLqdjnwRhUwqUMG3EAowjhUTB6irnsJs4-qmsas7v_R36eP0XbF0HAE2RPULpcrfWphQCnP_Pf_AsYUqYY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRQbe1-3EmElBGTATlRtrXVgk6DBkH_Ott9wOj8eBt3WFbl63ve6_f9z6ErgmTPidcOxKottUq3xEEmCM5MO3FItS5nU8yCvoTejdl0xq62WphlFI5-Uy17WG-ly-XsLalsg4NPJOAmwV3x8R9ygq11raiQnyD9UuVZD4OTeqRW-Z5bkAck4xNK2WXuQyjVcOnchxWkhoSdwbdZNgtiJblPX-Yr-Sxp9dASfXUBeVk0V5nog2fvxo6_nda-6j1rfLDD9v4dYBqKj1EjcrmAZd_fRPRZ27dKTI8fzeLD7Yk9II8m2KxwZY4_4JfN1b5hRdqlao3_PiUtNCkdzvu9p3SbMGZGwSROREY8OVJxaKAaBW7npYQm-SEB2HAI6lAUCWsKQREgdKRpOCByd-kDxBRaXDLEaqny1QdI-wRHtrOXRa-UQlMKJdBoMHlru9KJk5Q076E2UfRT2NWzv_079NXaLc_Toaz4WB0f4b2Cr6Gpcueo3q2WqsLAwoycZl_C1_hUKzT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Wavelet+image+compression+by+using+hybrid+kernel+SVM&rft.au=Jia-Ming+Chen&rft.au=Lei+Li&rft.au=Ling-Ye+Nie&rft.date=2008-07-01&rft.pub=IEEE&rft.isbn=9781424420957&rft.issn=2160-133X&rft.volume=5&rft.spage=3056&rft.epage=3060&rft_id=info:doi/10.1109%2FICMLC.2008.4620932&rft.externalDocID=4620932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon