Handwriting-based writer identification with complex wavelet transform
Handwriting-based writer identification is a hot research filed in pattern recognition. Off-line text-independent writer identification still remains as a challenging problem because writing features can only be extracted from the handwriting images. As a result, plenty of dynamic writing informatio...
Saved in:
Published in | 2008 International Conference on Wavelet Analysis and Pattern Recognition Vol. 2; pp. 597 - 601 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2008
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424422388 1424422388 |
ISSN | 2158-5695 |
DOI | 10.1109/ICWAPR.2008.4635849 |
Cover
Abstract | Handwriting-based writer identification is a hot research filed in pattern recognition. Off-line text-independent writer identification still remains as a challenging problem because writing features can only be extracted from the handwriting images. As a result, plenty of dynamic writing information, which is very valuable for writer identification, is unavailable for off-line writer identification. This results in high error rate in off-line writer identification. In order to enhance the performance of off-line writer identification, a complex wavelet-based GGD method was presented in this paper. The novel method is based on our discovery that complex wavelet coefficients within each high-frequency sub-band of the handwritings satisfy GGD distribution. Our experiments show the new method, compared with the traditional wavelet-based GGD method, and our method achieves a better performance. |
---|---|
AbstractList | Handwriting-based writer identification is a hot research filed in pattern recognition. Off-line text-independent writer identification still remains as a challenging problem because writing features can only be extracted from the handwriting images. As a result, plenty of dynamic writing information, which is very valuable for writer identification, is unavailable for off-line writer identification. This results in high error rate in off-line writer identification. In order to enhance the performance of off-line writer identification, a complex wavelet-based GGD method was presented in this paper. The novel method is based on our discovery that complex wavelet coefficients within each high-frequency sub-band of the handwritings satisfy GGD distribution. Our experiments show the new method, compared with the traditional wavelet-based GGD method, and our method achieves a better performance. |
Author | Bin Fang Da-Yuan Xu Yuan-Yan Tang Zhao-Wei Shang |
Author_xml | – sequence: 1 surname: Da-Yuan Xu fullname: Da-Yuan Xu organization: Coll. of Comput. Sci., Chong Qing Univ., Chongqing – sequence: 2 surname: Zhao-Wei Shang fullname: Zhao-Wei Shang organization: Coll. of Comput. Sci., Chong Qing Univ., Chongqing – sequence: 3 surname: Yuan-Yan Tang fullname: Yuan-Yan Tang organization: Coll. of Comput. Sci., Chong Qing Univ., Chongqing – sequence: 4 surname: Bin Fang fullname: Bin Fang organization: Coll. of Comput. Sci., Chong Qing Univ., Chongqing |
BookMark | eNpVkMFOAjEURWuEREC-gM38wGA77eu0S0JESEg0RuOSdNpXrZnpkJnG0b8XIhvv5uYszl3cKRnFNiIhC0aXjFF9t1u_rZ6elwWlaikkByX0FZnrUjFRCFEUXMP1P1ZqRCYFA5WD1DAm07OqKVOgbsi87z_pKQI4Bz0hm62JbuhCCvE9r0yPLjsTdllwGFPwwZoU2pgNIX1ktm2ONX5ng_nCGlOWOhN733bNLRl7U_c4v_SMvG7uX9bbfP_4sFuv9nlgJaRcVdRKtJ55jwWTKJmQrqTcOF9aybUrPZMAlaMeESojOLdgjMaSG-uV4zOy-NsNiHg4dqEx3c_hcgv_BSgmVhA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICWAPR.2008.4635849 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781424422395 1424422396 |
EndPage | 601 |
ExternalDocumentID | 4635849 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-8b0c6ecf1ffe216e6146d703adf7c639d7f1655bd0fee5ba433c5aa9e73acf8d3 |
IEDL.DBID | RIE |
ISBN | 9781424422388 1424422388 |
ISSN | 2158-5695 |
IngestDate | Wed Aug 27 01:49:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
LCCN | 2008901858 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-8b0c6ecf1ffe216e6146d703adf7c639d7f1655bd0fee5ba433c5aa9e73acf8d3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_4635849 |
PublicationCentury | 2000 |
PublicationDate | 2008-Aug. |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-Aug. |
PublicationDecade | 2000 |
PublicationTitle | 2008 International Conference on Wavelet Analysis and Pattern Recognition |
PublicationTitleAbbrev | ICWAPR |
PublicationYear | 2008 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000453359 ssj0003177784 |
Score | 1.718927 |
Snippet | Handwriting-based writer identification is a hot research filed in pattern recognition. Off-line text-independent writer identification still remains as a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 597 |
SubjectTerms | Accuracy Complex wavelet transform Distance measurement Feature extraction GGD KL distance Pattern recognition Transforms Wavelet analysis Wavelet transform Wavelet transforms |
Title | Handwriting-based writer identification with complex wavelet transform |
URI | https://ieeexplore.ieee.org/document/4635849 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvTio4pvcvDott1mk2yOUixVqBSx2JvkMZEibKVsqfjrTfZRH3jwtrOX7GaG_WYn33wDcJlwHwaS2khaK6PEWhsOCcOsFw-mhoq4r8OP4viej6bJ3YzNGnC16YVBxIJ8hp1wWZzl24VZhVJZN_HomCayCU0fZmWv1qae4lMTSitoDrbHRSGKgcMe1NKIccnqvi6PiGlayz3VdqVIFPdk93bwdD15KHmW1ZI_Zq8U0DPcgXH90CXj5LWzynXHfPzSc_zvW-3CwVeTH5ls4GsPGpjtw_Y3fcI2DEcqs-sge5S9RAHvLAkWLsncViyjwrEkVHNJwU7Hd7JWYZhFTvI6Jz6A6fDmcTCKqsEL0dxnE3mU6p7haFzsHPZjjh7CufWfBmWdMD6lscLFnDFtew6RaZVQaphSEgVVxqWWHkIrW2R4BMSwFIPKG-XUJdIJJbRQ3iHCsOAwfQztsCPPb6W2xnO1GSd_3z6FrZKvEQh4Z9DKlys890lBri-KaPgE_uqwDA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG4QD-rFBYy7PXh0gKHb9GiIZFAgxEDkRroaYjIYMgTjr7edBZd48DZvLu30Nf3evH7vewDcYOq2AUc64FrzAGut_SWh7_XiwFQhFral_1EcDGk8wQ9TMq2A200tjDEmI5-Zhn_M7vL1Qq18qqyJHTpGmG-BbYf7mOTVWpuMigtOECrA2dsOGRnLWg47WIsCQjkpK7scJkZRKfhU2oUmUdjizV7n-W70lDMti0F_dF_JwKe7DwbltHPOyWtjlcqG-vil6Pjf7zoA9a8yPzjaANghqJjkCOx9UyisgW4sEr32wkfJS-ART0NvmSWc64JnlLkW-nwuzPjp5h2uhW9nkcK0jIrrYNK9H3fioGi9EMxdPJEGkWwpapQNrTXtkBoH4lS7w0Foy5QLajSzISVE6pY1hkiBEVJECG4YEspGGh2DarJIzAmAikTG67whiizmlgkmmXAOYYp4h8lTUPMrMnvL1TVmxWKc_f36GuzE40F_1u8NH8_Bbs7e8HS8C1BNlytz6UKEVF5lO-MTa9-zWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+International+Conference+on+Wavelet+Analysis+and+Pattern+Recognition&rft.atitle=Handwriting-based+writer+identification+with+complex+wavelet+transform&rft.au=Da-Yuan+Xu&rft.au=Zhao-Wei+Shang&rft.au=Yuan-Yan+Tang&rft.au=Bin+Fang&rft.date=2008-08-01&rft.pub=IEEE&rft.isbn=9781424422388&rft.issn=2158-5695&rft.volume=2&rft.spage=597&rft.epage=601&rft_id=info:doi/10.1109%2FICWAPR.2008.4635849&rft.externalDocID=4635849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-5695&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-5695&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-5695&client=summon |