Discovering Aberrant Patterns of Human Connectome in Alzheimer's Disease via Subgraph Mining
Alzheimer's disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. Diffusion weighted imaging (DWI) provides a promising way to explore the organization of white matter fiber tracts in the human brain in a non-invasive way. However, the im...
Saved in:
Published in | 2012 IEEE 12th International Conference on Data Mining Workshops pp. 86 - 93 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-9232 |
DOI | 10.1109/ICDMW.2012.9 |
Cover
Abstract | Alzheimer's disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. Diffusion weighted imaging (DWI) provides a promising way to explore the organization of white matter fiber tracts in the human brain in a non-invasive way. However, the immense amount of data from millions of voxels of a raw diffusion map prevent an easy way to utilizable knowledge. In this paper, we focus on the question how we can identify disrupted spatial patterns of the human connectome in AD based on a data mining framework. Using diffusion tractography, the human connectomes for each individual subject were constructed based on two diffusion derived attributes: fiber density and fractional anisotropy, to represent the structural brain connectivity patterns. Then, these humanconnectomes were further mapped into a series of unweighted graphs by discretization. After frequent sub graph mining, the abnormal score was finally defined to identify disrupted sub graph patterns in patients. Experiments demonstrated that our data-driven approach, for the first time, allows identifying selective spatial pattern changes of the human connectome in AD that perfectly matched grey matter changes of the disease. Our findings further bring new insights into how AD propagates and disrupts the regional integrity of large-scale structural brain networks in a fiber connectivity-based way. |
---|---|
AbstractList | Alzheimer's disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. Diffusion weighted imaging (DWI) provides a promising way to explore the organization of white matter fiber tracts in the human brain in a non-invasive way. However, the immense amount of data from millions of voxels of a raw diffusion map prevent an easy way to utilizable knowledge. In this paper, we focus on the question how we can identify disrupted spatial patterns of the human connectome in AD based on a data mining framework. Using diffusion tractography, the human connectomes for each individual subject were constructed based on two diffusion derived attributes: fiber density and fractional anisotropy, to represent the structural brain connectivity patterns. Then, these humanconnectomes were further mapped into a series of unweighted graphs by discretization. After frequent sub graph mining, the abnormal score was finally defined to identify disrupted sub graph patterns in patients. Experiments demonstrated that our data-driven approach, for the first time, allows identifying selective spatial pattern changes of the human connectome in AD that perfectly matched grey matter changes of the disease. Our findings further bring new insights into how AD propagates and disrupts the regional integrity of large-scale structural brain networks in a fiber connectivity-based way. |
Author | Qinli Yang Junming Shao Wohlschlaeger, A. Sorg, C. |
Author_xml | – sequence: 1 surname: Junming Shao fullname: Junming Shao organization: Dept. of Neuroradiology, Tech. Univ. of Munich, Munich, Germany – sequence: 2 surname: Qinli Yang fullname: Qinli Yang organization: Inst. for Comput. Sci., Univ. of Mainz, Mainz, Germany – sequence: 3 givenname: A. surname: Wohlschlaeger fullname: Wohlschlaeger, A. organization: Inst. for Comput. Sci., Univ. of Munich, Munich, Germany – sequence: 4 givenname: C. surname: Sorg fullname: Sorg, C. organization: Inst. for Comput. Sci., Univ. of Munich, Munich, Germany |
BookMark | eNotzM1PwjAYgPGaYCIgN29eevO02Y91bY9kiJBANFGjBxPybnsHNawj7SDRv14SPT2n5zciA995JOSGs5RzZu-XxWz9ngrGRWovyIjp3KrMCvUxIEMhtUqskOKKTGL8YoxxKzNrxZB8zlysuhMG57d0WmII4Hv6DH2PwUfaNXRxbMHTovMeq75rkTpPp_ufHboWw12kZwAhIj05oC_HchvgsKNr58_gNblsYB9x8t8xeZs_vBaLZPX0uCymq8RxrfrEWEQwWtaVrsCapsYsbxhDrI2Spa6tUgzKyuQApTKmaWolUHHNS-DnJZNjcvvnOkTcHIJrIXxv8ozlmdDyFx44VZ0 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICDMW.2012.9 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 076954925X 9781467351645 9780769549255 1467351644 |
EndPage | 93 |
ExternalDocumentID | 6406427 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-89eea873dc7ca98fde46f00eed853b7d9550abc86aab588ffd52e5171ba1c7c43 |
IEDL.DBID | RIE |
ISSN | 2375-9232 |
IngestDate | Wed Aug 27 02:44:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-89eea873dc7ca98fde46f00eed853b7d9550abc86aab588ffd52e5171ba1c7c43 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6406427 |
PublicationCentury | 2000 |
PublicationDate | 2012-Dec. |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2012 IEEE 12th International Conference on Data Mining Workshops |
PublicationTitleAbbrev | icdmw |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001934992 ssj0001035074 |
Score | 1.5177073 |
Snippet | Alzheimer's disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. Diffusion weighted imaging (DWI)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 86 |
SubjectTerms | Alzheimer's Disease Data mining Dementia Diffusion Tensor Imaging Human Connectome Humans Imaging Subgraph Mining Tensile stress |
Title | Discovering Aberrant Patterns of Human Connectome in Alzheimer's Disease via Subgraph Mining |
URI | https://ieeexplore.ieee.org/document/6406427 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMH6nBxMvbrCxruuRgARNZjhI5GBC-vEWF2UzMDzw19t2A6Lx4K1b1uSl7fp-773few-hm0jwpKe6xBEKpBMIrkdcCEeZamCUAPW58XfET-F4GjzOyKyG7na5MABgyWfgmqGN5atcro2rrBMGBi7TOqrrY1bmau39KSZEVkEZ-8x6Gsz7trccJY7GMf6O9846D4Nh_GKIXb7LfvRVsWpl1ETxVqCSTfLurgvhys2vWo3_lfgQtfcJfHiyU01HqAbZMWpuOzjg6oduoddhupKGxKm_wn0BS625CjyxNTezFc4TbJ382NJhZJEvAKcZ7n9s3iBdwPJ2hYdlgAd_pRzrS8jWv8ax7TrRRtPR_fNg7FT9FpxUg4jCiRgAj2hPSSo5ixIFQZh0u1pUrdMFVUxbM1zIKORckChKEkV8IB71BPf0lKB3ghpZnsEpwopybccJ5VMuAqoI41TbSYnHiOR-6Isz1DKLNf8sS2rMq3U6__v1BTowW1WySC5Ro1iu4UpjgUJc20PwDYDxs54 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3ezDxYguUbrc9EpCAUsIBIgcTso9pbJRioHjg17u7LRCNB2_bpk0m28d8M_PNfAjd-ZxFDVkjFpcgLJcztWKcW1JPA6MEqMN0viMceN2x-zQhkwJ62PbCAIAhn4Gtl6aWL-dipVNlVc_VcJnuoX3l912SdWvtMiq6SJaDGXMcNBScd4y6HCWWQjLOlvkeVHutdviiqV2OHfxQVjGOpVNC4cakjE_ybq9Sbov1r2mN_7X5CFV2LXx4uHVOx6gAyQkqbTQccP5Jl9FrO14KTeNUV-Emh4XyXSkemqmbyRLPI2zS_NgQYkQ6nwGOE9z8WL9BPIPF_RK3sxIP_ooZVr8hMwEbh0Z3ooLGncdRq2vligtWrGBEavkBAPNpQwoqWOBHElwvqtWUqcqrcyoDFc8wLnyPMU58P4okcYDUaZ2zurrFbZyiYjJP4AxhSZmK5Lh0KOMulSRgVEVKUT0ggjmew89RWW_W9DMbqjHN9-ni79O36KA7CvvTfm_wfIkO9WPLOCVXqJguVnCtkEHKb8wL8Q0Yh7br |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2012+IEEE+12th+International+Conference+on+Data+Mining+Workshops&rft.atitle=Discovering+Aberrant+Patterns+of+Human+Connectome+in+Alzheimer%27s+Disease+via+Subgraph+Mining&rft.au=Junming+Shao&rft.au=Qinli+Yang&rft.au=Wohlschlaeger%2C+A.&rft.au=Sorg%2C+C.&rft.date=2012-12-01&rft.pub=IEEE&rft.issn=2375-9232&rft.spage=86&rft.epage=93&rft_id=info:doi/10.1109%2FICDMW.2012.9&rft.externalDocID=6406427 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-9232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-9232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-9232&client=summon |