Discovering Aberrant Patterns of Human Connectome in Alzheimer's Disease via Subgraph Mining

Alzheimer's disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. Diffusion weighted imaging (DWI) provides a promising way to explore the organization of white matter fiber tracts in the human brain in a non-invasive way. However, the im...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE 12th International Conference on Data Mining Workshops pp. 86 - 93
Main Authors Junming Shao, Qinli Yang, Wohlschlaeger, A., Sorg, C.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2012
Subjects
Online AccessGet full text
ISSN2375-9232
DOI10.1109/ICDMW.2012.9

Cover

Abstract Alzheimer's disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. Diffusion weighted imaging (DWI) provides a promising way to explore the organization of white matter fiber tracts in the human brain in a non-invasive way. However, the immense amount of data from millions of voxels of a raw diffusion map prevent an easy way to utilizable knowledge. In this paper, we focus on the question how we can identify disrupted spatial patterns of the human connectome in AD based on a data mining framework. Using diffusion tractography, the human connectomes for each individual subject were constructed based on two diffusion derived attributes: fiber density and fractional anisotropy, to represent the structural brain connectivity patterns. Then, these humanconnectomes were further mapped into a series of unweighted graphs by discretization. After frequent sub graph mining, the abnormal score was finally defined to identify disrupted sub graph patterns in patients. Experiments demonstrated that our data-driven approach, for the first time, allows identifying selective spatial pattern changes of the human connectome in AD that perfectly matched grey matter changes of the disease. Our findings further bring new insights into how AD propagates and disrupts the regional integrity of large-scale structural brain networks in a fiber connectivity-based way.
AbstractList Alzheimer's disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. Diffusion weighted imaging (DWI) provides a promising way to explore the organization of white matter fiber tracts in the human brain in a non-invasive way. However, the immense amount of data from millions of voxels of a raw diffusion map prevent an easy way to utilizable knowledge. In this paper, we focus on the question how we can identify disrupted spatial patterns of the human connectome in AD based on a data mining framework. Using diffusion tractography, the human connectomes for each individual subject were constructed based on two diffusion derived attributes: fiber density and fractional anisotropy, to represent the structural brain connectivity patterns. Then, these humanconnectomes were further mapped into a series of unweighted graphs by discretization. After frequent sub graph mining, the abnormal score was finally defined to identify disrupted sub graph patterns in patients. Experiments demonstrated that our data-driven approach, for the first time, allows identifying selective spatial pattern changes of the human connectome in AD that perfectly matched grey matter changes of the disease. Our findings further bring new insights into how AD propagates and disrupts the regional integrity of large-scale structural brain networks in a fiber connectivity-based way.
Author Qinli Yang
Junming Shao
Wohlschlaeger, A.
Sorg, C.
Author_xml – sequence: 1
  surname: Junming Shao
  fullname: Junming Shao
  organization: Dept. of Neuroradiology, Tech. Univ. of Munich, Munich, Germany
– sequence: 2
  surname: Qinli Yang
  fullname: Qinli Yang
  organization: Inst. for Comput. Sci., Univ. of Mainz, Mainz, Germany
– sequence: 3
  givenname: A.
  surname: Wohlschlaeger
  fullname: Wohlschlaeger, A.
  organization: Inst. for Comput. Sci., Univ. of Munich, Munich, Germany
– sequence: 4
  givenname: C.
  surname: Sorg
  fullname: Sorg, C.
  organization: Inst. for Comput. Sci., Univ. of Munich, Munich, Germany
BookMark eNotzM1PwjAYgPGaYCIgN29eevO02Y91bY9kiJBANFGjBxPybnsHNawj7SDRv14SPT2n5zciA995JOSGs5RzZu-XxWz9ngrGRWovyIjp3KrMCvUxIEMhtUqskOKKTGL8YoxxKzNrxZB8zlysuhMG57d0WmII4Hv6DH2PwUfaNXRxbMHTovMeq75rkTpPp_ufHboWw12kZwAhIj05oC_HchvgsKNr58_gNblsYB9x8t8xeZs_vBaLZPX0uCymq8RxrfrEWEQwWtaVrsCapsYsbxhDrI2Spa6tUgzKyuQApTKmaWolUHHNS-DnJZNjcvvnOkTcHIJrIXxv8ozlmdDyFx44VZ0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDMW.2012.9
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 076954925X
9781467351645
9780769549255
1467351644
EndPage 93
ExternalDocumentID 6406427
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-89eea873dc7ca98fde46f00eed853b7d9550abc86aab588ffd52e5171ba1c7c43
IEDL.DBID RIE
ISSN 2375-9232
IngestDate Wed Aug 27 02:44:37 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-89eea873dc7ca98fde46f00eed853b7d9550abc86aab588ffd52e5171ba1c7c43
PageCount 8
ParticipantIDs ieee_primary_6406427
PublicationCentury 2000
PublicationDate 2012-Dec.
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-Dec.
PublicationDecade 2010
PublicationTitle 2012 IEEE 12th International Conference on Data Mining Workshops
PublicationTitleAbbrev icdmw
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001934992
ssj0001035074
Score 1.5177073
Snippet Alzheimer's disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. Diffusion weighted imaging (DWI)...
SourceID ieee
SourceType Publisher
StartPage 86
SubjectTerms Alzheimer's Disease
Data mining
Dementia
Diffusion Tensor Imaging
Human Connectome
Humans
Imaging
Subgraph Mining
Tensile stress
Title Discovering Aberrant Patterns of Human Connectome in Alzheimer's Disease via Subgraph Mining
URI https://ieeexplore.ieee.org/document/6406427
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMH6nBxMvbrCxruuRgARNZjhI5GBC-vEWF2UzMDzw19t2A6Lx4K1b1uSl7fp-773few-hm0jwpKe6xBEKpBMIrkdcCEeZamCUAPW58XfET-F4GjzOyKyG7na5MABgyWfgmqGN5atcro2rrBMGBi7TOqrrY1bmau39KSZEVkEZ-8x6Gsz7trccJY7GMf6O9846D4Nh_GKIXb7LfvRVsWpl1ETxVqCSTfLurgvhys2vWo3_lfgQtfcJfHiyU01HqAbZMWpuOzjg6oduoddhupKGxKm_wn0BS625CjyxNTezFc4TbJ382NJhZJEvAKcZ7n9s3iBdwPJ2hYdlgAd_pRzrS8jWv8ax7TrRRtPR_fNg7FT9FpxUg4jCiRgAj2hPSSo5ixIFQZh0u1pUrdMFVUxbM1zIKORckChKEkV8IB71BPf0lKB3ghpZnsEpwopybccJ5VMuAqoI41TbSYnHiOR-6Isz1DKLNf8sS2rMq3U6__v1BTowW1WySC5Ro1iu4UpjgUJc20PwDYDxs54
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3ezDxYguUbrc9EpCAUsIBIgcTso9pbJRioHjg17u7LRCNB2_bpk0m28d8M_PNfAjd-ZxFDVkjFpcgLJcztWKcW1JPA6MEqMN0viMceN2x-zQhkwJ62PbCAIAhn4Gtl6aWL-dipVNlVc_VcJnuoX3l912SdWvtMiq6SJaDGXMcNBScd4y6HCWWQjLOlvkeVHutdviiqV2OHfxQVjGOpVNC4cakjE_ybq9Sbov1r2mN_7X5CFV2LXx4uHVOx6gAyQkqbTQccP5Jl9FrO14KTeNUV-Emh4XyXSkemqmbyRLPI2zS_NgQYkQ6nwGOE9z8WL9BPIPF_RK3sxIP_ooZVr8hMwEbh0Z3ooLGncdRq2vligtWrGBEavkBAPNpQwoqWOBHElwvqtWUqcqrcyoDFc8wLnyPMU58P4okcYDUaZ2zurrFbZyiYjJP4AxhSZmK5Lh0KOMulSRgVEVKUT0ggjmew89RWW_W9DMbqjHN9-ni79O36KA7CvvTfm_wfIkO9WPLOCVXqJguVnCtkEHKb8wL8Q0Yh7br
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2012+IEEE+12th+International+Conference+on+Data+Mining+Workshops&rft.atitle=Discovering+Aberrant+Patterns+of+Human+Connectome+in+Alzheimer%27s+Disease+via+Subgraph+Mining&rft.au=Junming+Shao&rft.au=Qinli+Yang&rft.au=Wohlschlaeger%2C+A.&rft.au=Sorg%2C+C.&rft.date=2012-12-01&rft.pub=IEEE&rft.issn=2375-9232&rft.spage=86&rft.epage=93&rft_id=info:doi/10.1109%2FICDMW.2012.9&rft.externalDocID=6406427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-9232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-9232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-9232&client=summon