Adaptive density-based spatial clustering of applications with noise (DBSCAN) according to data

Clustering is a task that aims to grouping data objects into several groups. DBSCAN is a density-based clustering method. However, it requires two parameters and these two parameters are hard to decide. Also, DBSCAN has difficulties in finding clusters when the density changes in the dataset. In thi...

Full description

Saved in:
Bibliographic Details
Published in2015 International Conference on Machine Learning and Cybernetics (ICMLC) Vol. 1; pp. 445 - 451
Main Authors Wei-Tung Wang, Yi-Leh Wu, Cheng-Yuan Tang, Maw-Kae Hor
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2015
Subjects
Online AccessGet full text
DOI10.1109/ICMLC.2015.7340962

Cover

Abstract Clustering is a task that aims to grouping data objects into several groups. DBSCAN is a density-based clustering method. However, it requires two parameters and these two parameters are hard to decide. Also, DBSCAN has difficulties in finding clusters when the density changes in the dataset. In this paper, we modify the original DBSCAN to make it able to determine the appropriate eps values according to data distribution and to cluster when the density varies among dataset. The main idea is to run DBSCAN with different eps and Minpts values. We also modified the calculation of the Minpts so that DBSCAN can have better clustering results. We did several experiments to evaluate the performance. The results suggest that our proposed DBSCAN can automatically decide the appropriate eps and Minpts values and can detect clusters with different density-levels.
AbstractList Clustering is a task that aims to grouping data objects into several groups. DBSCAN is a density-based clustering method. However, it requires two parameters and these two parameters are hard to decide. Also, DBSCAN has difficulties in finding clusters when the density changes in the dataset. In this paper, we modify the original DBSCAN to make it able to determine the appropriate eps values according to data distribution and to cluster when the density varies among dataset. The main idea is to run DBSCAN with different eps and Minpts values. We also modified the calculation of the Minpts so that DBSCAN can have better clustering results. We did several experiments to evaluate the performance. The results suggest that our proposed DBSCAN can automatically decide the appropriate eps and Minpts values and can detect clusters with different density-levels.
Author Yi-Leh Wu
Wei-Tung Wang
Maw-Kae Hor
Cheng-Yuan Tang
Author_xml – sequence: 1
  surname: Wei-Tung Wang
  fullname: Wei-Tung Wang
  email: ywu@csie.ntust.edu.tw
  organization: Dept. of. Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan
– sequence: 2
  surname: Yi-Leh Wu
  fullname: Yi-Leh Wu
  organization: Dept. of. Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan
– sequence: 3
  surname: Cheng-Yuan Tang
  fullname: Cheng-Yuan Tang
  email: cytang@cc.hfu.edu.tw
  organization: Dept. of Inf. Manage., Huafan Univ., Taipei, Taiwan
– sequence: 4
  surname: Maw-Kae Hor
  fullname: Maw-Kae Hor
  email: mhor@mail.knu.edu.tw
  organization: Sch. of Inf., Kainan Univ., Taoyuan, Taiwan
BookMark eNotkLtOxDAURI0EEuyyPwCNSygSrh-x4zKE10oBCkCii25iB4xCEsUGtH_PIraaYo5GR7Mg-8M4OEJOGKSMgblYl_dVmXJgWaqFBKP4HlkwqbTQnMPrIVmF8AEATCulgB-RurA4Rf_tqHVD8HGTNBicpWHC6LGnbf8Vopv98EbHjuI09b7dNuMQ6I-P73QYfXD07OryqSwezim27TjbPzqO1GLEY3LQYR_capdL8nJz_VzeJdXj7bosqsQzncUkN7nOOkTTCjSghcjyTG4VhbMKWms6bgQ2UjEpm05yZsDkogMlETVXQoglOf3f9c65epr9J86beveB-AWwtVNP
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2015.7340962
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 146737220X
9781467372213
1467372218
9781467372206
EndPage 451
ExternalDocumentID 7340962
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-89875faa9c3a9073358546663ed60cd9f293ab46144bf42190983f064aa726333
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:51 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-89875faa9c3a9073358546663ed60cd9f293ab46144bf42190983f064aa726333
PageCount 7
ParticipantIDs ieee_primary_7340962
PublicationCentury 2000
PublicationDate 2015-July
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-July
PublicationDecade 2010
PublicationTitle 2015 International Conference on Machine Learning and Cybernetics (ICMLC)
PublicationTitleAbbrev ICMLC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001766602
Score 1.882873
Snippet Clustering is a task that aims to grouping data objects into several groups. DBSCAN is a density-based clustering method. However, it requires two parameters...
SourceID ieee
SourceType Publisher
StartPage 445
SubjectTerms Clustering
Data mining
DBSCAN
Title Adaptive density-based spatial clustering of applications with noise (DBSCAN) according to data
URI https://ieeexplore.ieee.org/document/7340962
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gJ0-oYBQ_sgcPmrilstuWHrFK0AgxURJuZLe7mxBJS6Q96K93pi2gxoO3pum2zUw782b2zQwhF7EyEvyIYMJqxQQEHAwLOpngygrsP-LeYDXyaOwPJ-Jx6k1r5HpTC2OMKchnxsHDYi9fp3GOqbJOwCEaQYO7A59ZWau1zacEAMSRrNOu2mh2HqLRU4TkLc-pFv6YoFI4kEGDjNaPLnkjb06eKSf-_NWV8b_vtkda21I9-rxxQvukZpID0ljPaqDVr9sks76WSzRtVCNlPftg6L80XSGjWi5ovMixZQLcg6aWft_WppiqpUk6Xxl6eXf7EvXHV1TGGLXi1VlKkWXaIpPB_Ws0ZNVwBTYHxJCxXgiRipUyjLkMcXIjxA0CRMiN9t1YhxZwgFQC40XQGtg1N-xxCwBGyqDrc84PST1JE3NEqPED7dmQA_KTYHcNIIBAdYW1wnMlt-qYNFFes2XZP2NWiar99-kTsos6Kymxp6SevefmDBx_ps4LjX8BVjysgA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOgJFYzi1x48aOIWZLctPWKVgFJiIiTcmm27mxBJS6Q96K93pi2gxoO3pulXZtKZ93bfzBByFQZKQh4RTOgoYAIIB8OCTiZ4oAX2H2nfYTWyN7YGU_E0M2cVcruphVFK5eIzZeBhvpcfJWGGS2UtmwMbwYC7A3lfmEW11nZFxQYojnKdZtlIszV0vZGL8i3TKG_9MUMlTyH9GvHWLy-UI29GlgZG-PmrL-N_v26fNLbFevRlk4YOSEXFh6S2ntZAy5-3TvxeJJcY3GiEovX0g2EGi-gKNdVyQcNFhk0T4Bk00fT7xjbFxVoaJ_OVotcP969ub3xDZYi8Fa9OE4o60waZ9h8n7oCV4xXYHDBDyroOcBUtpRNy6eDsRmAOAkzIVWS1w8jRgARkIJAxgt8gsrWdLtcAYaS0Oxbn_IhU4yRWx4Qqy45M7XDAfhIirwIMYAcdobUw25Lr4ITU0V7-suig4Zemav59-pLsDibeyB8Nx8-nZA_9Vwhkz0g1fc_UOcCANLjIvf8FjeivzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Machine+Learning+and+Cybernetics+%28ICMLC%29&rft.atitle=Adaptive+density-based+spatial+clustering+of+applications+with+noise+%28DBSCAN%29+according+to+data&rft.au=Wei-Tung+Wang&rft.au=Yi-Leh+Wu&rft.au=Cheng-Yuan+Tang&rft.au=Maw-Kae+Hor&rft.date=2015-07-01&rft.pub=IEEE&rft.volume=1&rft.spage=445&rft.epage=451&rft_id=info:doi/10.1109%2FICMLC.2015.7340962&rft.externalDocID=7340962