Adaptive density-based spatial clustering of applications with noise (DBSCAN) according to data
Clustering is a task that aims to grouping data objects into several groups. DBSCAN is a density-based clustering method. However, it requires two parameters and these two parameters are hard to decide. Also, DBSCAN has difficulties in finding clusters when the density changes in the dataset. In thi...
Saved in:
Published in | 2015 International Conference on Machine Learning and Cybernetics (ICMLC) Vol. 1; pp. 445 - 451 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2015
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICMLC.2015.7340962 |
Cover
Abstract | Clustering is a task that aims to grouping data objects into several groups. DBSCAN is a density-based clustering method. However, it requires two parameters and these two parameters are hard to decide. Also, DBSCAN has difficulties in finding clusters when the density changes in the dataset. In this paper, we modify the original DBSCAN to make it able to determine the appropriate eps values according to data distribution and to cluster when the density varies among dataset. The main idea is to run DBSCAN with different eps and Minpts values. We also modified the calculation of the Minpts so that DBSCAN can have better clustering results. We did several experiments to evaluate the performance. The results suggest that our proposed DBSCAN can automatically decide the appropriate eps and Minpts values and can detect clusters with different density-levels. |
---|---|
AbstractList | Clustering is a task that aims to grouping data objects into several groups. DBSCAN is a density-based clustering method. However, it requires two parameters and these two parameters are hard to decide. Also, DBSCAN has difficulties in finding clusters when the density changes in the dataset. In this paper, we modify the original DBSCAN to make it able to determine the appropriate eps values according to data distribution and to cluster when the density varies among dataset. The main idea is to run DBSCAN with different eps and Minpts values. We also modified the calculation of the Minpts so that DBSCAN can have better clustering results. We did several experiments to evaluate the performance. The results suggest that our proposed DBSCAN can automatically decide the appropriate eps and Minpts values and can detect clusters with different density-levels. |
Author | Yi-Leh Wu Wei-Tung Wang Maw-Kae Hor Cheng-Yuan Tang |
Author_xml | – sequence: 1 surname: Wei-Tung Wang fullname: Wei-Tung Wang email: ywu@csie.ntust.edu.tw organization: Dept. of. Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan – sequence: 2 surname: Yi-Leh Wu fullname: Yi-Leh Wu organization: Dept. of. Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan – sequence: 3 surname: Cheng-Yuan Tang fullname: Cheng-Yuan Tang email: cytang@cc.hfu.edu.tw organization: Dept. of Inf. Manage., Huafan Univ., Taipei, Taiwan – sequence: 4 surname: Maw-Kae Hor fullname: Maw-Kae Hor email: mhor@mail.knu.edu.tw organization: Sch. of Inf., Kainan Univ., Taoyuan, Taiwan |
BookMark | eNotkLtOxDAURI0EEuyyPwCNSygSrh-x4zKE10oBCkCii25iB4xCEsUGtH_PIraaYo5GR7Mg-8M4OEJOGKSMgblYl_dVmXJgWaqFBKP4HlkwqbTQnMPrIVmF8AEATCulgB-RurA4Rf_tqHVD8HGTNBicpWHC6LGnbf8Vopv98EbHjuI09b7dNuMQ6I-P73QYfXD07OryqSwezim27TjbPzqO1GLEY3LQYR_capdL8nJz_VzeJdXj7bosqsQzncUkN7nOOkTTCjSghcjyTG4VhbMKWms6bgQ2UjEpm05yZsDkogMlETVXQoglOf3f9c65epr9J86beveB-AWwtVNP |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2015.7340962 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 146737220X 9781467372213 1467372218 9781467372206 |
EndPage | 451 |
ExternalDocumentID | 7340962 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-89875faa9c3a9073358546663ed60cd9f293ab46144bf42190983f064aa726333 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:51:51 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-89875faa9c3a9073358546663ed60cd9f293ab46144bf42190983f064aa726333 |
PageCount | 7 |
ParticipantIDs | ieee_primary_7340962 |
PublicationCentury | 2000 |
PublicationDate | 2015-July |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-July |
PublicationDecade | 2010 |
PublicationTitle | 2015 International Conference on Machine Learning and Cybernetics (ICMLC) |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001766602 |
Score | 1.882873 |
Snippet | Clustering is a task that aims to grouping data objects into several groups. DBSCAN is a density-based clustering method. However, it requires two parameters... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 445 |
SubjectTerms | Clustering Data mining DBSCAN |
Title | Adaptive density-based spatial clustering of applications with noise (DBSCAN) according to data |
URI | https://ieeexplore.ieee.org/document/7340962 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gJ0-oYBQ_sgcPmrilstuWHrFK0AgxURJuZLe7mxBJS6Q96K93pi2gxoO3pum2zUw782b2zQwhF7EyEvyIYMJqxQQEHAwLOpngygrsP-LeYDXyaOwPJ-Jx6k1r5HpTC2OMKchnxsHDYi9fp3GOqbJOwCEaQYO7A59ZWau1zacEAMSRrNOu2mh2HqLRU4TkLc-pFv6YoFI4kEGDjNaPLnkjb06eKSf-_NWV8b_vtkda21I9-rxxQvukZpID0ljPaqDVr9sks76WSzRtVCNlPftg6L80XSGjWi5ovMixZQLcg6aWft_WppiqpUk6Xxl6eXf7EvXHV1TGGLXi1VlKkWXaIpPB_Ws0ZNVwBTYHxJCxXgiRipUyjLkMcXIjxA0CRMiN9t1YhxZwgFQC40XQGtg1N-xxCwBGyqDrc84PST1JE3NEqPED7dmQA_KTYHcNIIBAdYW1wnMlt-qYNFFes2XZP2NWiar99-kTsos6Kymxp6SevefmDBx_ps4LjX8BVjysgA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOgJFYzi1x48aOIWZLctPWKVgFJiIiTcmm27mxBJS6Q96K93pi2gxoO3pulXZtKZ93bfzBByFQZKQh4RTOgoYAIIB8OCTiZ4oAX2H2nfYTWyN7YGU_E0M2cVcruphVFK5eIzZeBhvpcfJWGGS2UtmwMbwYC7A3lfmEW11nZFxQYojnKdZtlIszV0vZGL8i3TKG_9MUMlTyH9GvHWLy-UI29GlgZG-PmrL-N_v26fNLbFevRlk4YOSEXFh6S2ntZAy5-3TvxeJJcY3GiEovX0g2EGi-gKNdVyQcNFhk0T4Bk00fT7xjbFxVoaJ_OVotcP969ub3xDZYi8Fa9OE4o60waZ9h8n7oCV4xXYHDBDyroOcBUtpRNy6eDsRmAOAkzIVWS1w8jRgARkIJAxgt8gsrWdLtcAYaS0Oxbn_IhU4yRWx4Qqy45M7XDAfhIirwIMYAcdobUw25Lr4ITU0V7-suig4Zemav59-pLsDibeyB8Nx8-nZA_9Vwhkz0g1fc_UOcCANLjIvf8FjeivzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Machine+Learning+and+Cybernetics+%28ICMLC%29&rft.atitle=Adaptive+density-based+spatial+clustering+of+applications+with+noise+%28DBSCAN%29+according+to+data&rft.au=Wei-Tung+Wang&rft.au=Yi-Leh+Wu&rft.au=Cheng-Yuan+Tang&rft.au=Maw-Kae+Hor&rft.date=2015-07-01&rft.pub=IEEE&rft.volume=1&rft.spage=445&rft.epage=451&rft_id=info:doi/10.1109%2FICMLC.2015.7340962&rft.externalDocID=7340962 |