Designing deep neural networks to automate segmentation for serial block-face electron microscopy
Today, serial block-face scanning electron microscopy (SBF-SEM) is capable of producing teravoxel-scale 3D images of biological structures at nanometer-scale resolutions. Image segmentation is fundamental to data analysis workflows in biological electron microscopy (EM), but SBF-SEM datasets can gre...
Saved in:
Published in | 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) pp. 405 - 408 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Today, serial block-face scanning electron microscopy (SBF-SEM) is capable of producing teravoxel-scale 3D images of biological structures at nanometer-scale resolutions. Image segmentation is fundamental to data analysis workflows in biological electron microscopy (EM), but SBF-SEM datasets can greatly exceed the manual segmentation capacity of a laboratory. Fast automated segmentation algorithms would alleviate this problem, but practical solutions remain unavailable for many biological problems of interest. Segmentation algorithms using deep neural networks have recently demonstrated significant performance gains, but designing high-performing networks that effectively solve targeted problems remains challenging. We are developing genenet, a Python package to rapidly discover, train, and deploy high-performing neural network architectures for SBF-SEM segmentation with little user intervention. Here, we demonstrate how to use genenet to train an ensemble of segmentation networks for a human platelet tissue sample. Initial results indicate this approach is viable for accelerating the segmentation process. |
---|---|
AbstractList | Today, serial block-face scanning electron microscopy (SBF-SEM) is capable of producing teravoxel-scale 3D images of biological structures at nanometer-scale resolutions. Image segmentation is fundamental to data analysis workflows in biological electron microscopy (EM), but SBF-SEM datasets can greatly exceed the manual segmentation capacity of a laboratory. Fast automated segmentation algorithms would alleviate this problem, but practical solutions remain unavailable for many biological problems of interest. Segmentation algorithms using deep neural networks have recently demonstrated significant performance gains, but designing high-performing networks that effectively solve targeted problems remains challenging. We are developing genenet, a Python package to rapidly discover, train, and deploy high-performing neural network architectures for SBF-SEM segmentation with little user intervention. Here, we demonstrate how to use genenet to train an ensemble of segmentation networks for a human platelet tissue sample. Initial results indicate this approach is viable for accelerating the segmentation process. |
Author | Guay, Matthew Emam, Zeyad Anderson, Adam Leapman, Richard |
Author_xml | – sequence: 1 givenname: Matthew surname: Guay fullname: Guay, Matthew organization: Nat. Inst. of Biomed. Imaging & Bioeng., Bethesda, MD, USA – sequence: 2 givenname: Zeyad surname: Emam fullname: Emam, Zeyad organization: Appl. Math., Univ. of Maryland, College Park, MD, USA – sequence: 3 givenname: Adam surname: Anderson fullname: Anderson, Adam organization: Comput. Sci., Univ. of Maryland, College Park, MD, USA – sequence: 4 givenname: Richard surname: Leapman fullname: Leapman, Richard organization: Nat. Inst. of Biomed. Imaging & Bioeng., Bethesda, MD, USA |
BookMark | eNotkM9KAzEYxKMoWGsfQLzkBbbm2_zZ5Ki1aqHgQT2XbPxSYnc3JUmRvr0rdi4_mBnmMNfkYogDEnILbA7AzP3q_XE1rxnoueaKK8bPyMw0GiTX6s9ozskEjJCVFrK-IrOcv9moRgjOxITYJ8xhO4RhS78Q93TAQ7LdiPIT0y7TEqk9lNjbgjTjtseh2BLiQH1Mo5HCWG676HaVtw4pduhKGuM-uBSzi_vjDbn0tss4O3FKPp-XH4vXav32slo8rKsAjSyVVsZL78BhjchaK5hxtQNjRQ21ZoBGMetb3lhsAbzy0AqQrbIWtHSm4VNy978bEHGzT6G36bg5ncJ_AXiwWVs |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI.2018.8363603 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISBN | 9781538636367 1538636360 |
EISSN | 1945-8452 |
EndPage | 408 |
ExternalDocumentID | 8363603 |
Genre | orig-research |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-869f5fc1ce2ee0ba409c2c19a4212801e960afb37aeb11f6f1b415b6aa185c973 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:28:43 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-869f5fc1ce2ee0ba409c2c19a4212801e960afb37aeb11f6f1b415b6aa185c973 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8363603 |
PublicationCentury | 2000 |
PublicationDate | 2018-April |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-April |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.1562653 |
Snippet | Today, serial block-face scanning electron microscopy (SBF-SEM) is capable of producing teravoxel-scale 3D images of biological structures at nanometer-scale... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 405 |
SubjectTerms | automated segmentation Biology Convolutional codes Deep learning electron microscopy Image segmentation Neural networks Scanning electron microscopy serial block-face imaging Training data |
Title | Designing deep neural networks to automate segmentation for serial block-face electron microscopy |
URI | https://ieeexplore.ieee.org/document/8363603 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7agqAXta34JgeP7na3-776ohUqghZ6K0l2IlK7W-zuof56J9ltfeDB04aFkJCEfDOZb74BuBDoBDKW5JvIWFi-UtISZJhb0kkjhejFsdEpGD2Eg7F_PwkmDbjc5MIgoiGfoa2bJpaf5rLUT2W92NPqVl4TmlGSVLlam_cUgkKfXPM6cOk6SW_4dDXU3K3Yrvv9KKBi8ONuF0brkSvayMwuC2HLj1-ijP-d2h50vzL12OMGg_ahgVkbtqoCk6s27HyTG-wAvzF0DWqzFHHBtJYlf6OPYYIvWZEzXhY52bDIlvgyr9OSMkaGLauOKhMEfjNLcRp3XUGHzTWpT6e3rLowvrt9vh5YdYkF65XshsKKw0QFSroS-4iO4OTtyb50E64DxQReSA4OV8KLON3prgqVKwjxRcg54bxMIu8AWlme4SGwKEy56PsiMYI9ni9SFUlXhMp36V4I3CPo6GWbLioVjWm9Ysd__z6Bbb11FUfmFFrFe4lnBP-FODf7_gkTJbIS |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFD5BjFFfVMB4tw8-OqBs7PLqhYACMRES3kjbnRqDMCLbA_56T7eBl_jg05olS5e26fed9jvfAbiSWG8qX1FsonxpOVorSxIxt1Q99DSi7fupT0Gv77aHzsOoOSrA9ToXBhFT8RlWTTO9yw8jlZijsppvG3crewM2iVf7bpattT5RITB0KDjPry55Pah1nm86Rr3lV_Mvf5RQSRGktQe9Vd-ZcGRSTWJZVR-_bBn_-3P7UPnK1WNPaxQ6gALOSrCVlZhclmD3m-FgGcRdKtigNgsR58y4WYo3eqRa8AWLIyaSOCIWi2yBL9M8MWnGiNqybLEySfA3sbSgflc1dNjUyPpMgsuyAsPW_eC2beVFFqxXYg6x5buBbmrFFTYQ61JQvKcaigfCXBUTfCGFOEJL2xO0q3Ptai4J86UrBCG9Cjz7EIqzaIZHwDw3FLLhyCC17LEdGWpPcelqh9PO0OTHUDbDNp5nPhrjfMRO_n59CdvtQa877nb6j6ewY6YxU8ycQTF-T_CcyEAsL9I18AmOHbVd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+15th+International+Symposium+on+Biomedical+Imaging+%28ISBI+2018%29&rft.atitle=Designing+deep+neural+networks+to+automate+segmentation+for+serial+block-face+electron+microscopy&rft.au=Guay%2C+Matthew&rft.au=Emam%2C+Zeyad&rft.au=Anderson%2C+Adam&rft.au=Leapman%2C+Richard&rft.date=2018-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=405&rft.epage=408&rft_id=info:doi/10.1109%2FISBI.2018.8363603&rft.externalDocID=8363603 |