Designing deep neural networks to automate segmentation for serial block-face electron microscopy

Today, serial block-face scanning electron microscopy (SBF-SEM) is capable of producing teravoxel-scale 3D images of biological structures at nanometer-scale resolutions. Image segmentation is fundamental to data analysis workflows in biological electron microscopy (EM), but SBF-SEM datasets can gre...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) pp. 405 - 408
Main Authors Guay, Matthew, Emam, Zeyad, Anderson, Adam, Leapman, Richard
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Today, serial block-face scanning electron microscopy (SBF-SEM) is capable of producing teravoxel-scale 3D images of biological structures at nanometer-scale resolutions. Image segmentation is fundamental to data analysis workflows in biological electron microscopy (EM), but SBF-SEM datasets can greatly exceed the manual segmentation capacity of a laboratory. Fast automated segmentation algorithms would alleviate this problem, but practical solutions remain unavailable for many biological problems of interest. Segmentation algorithms using deep neural networks have recently demonstrated significant performance gains, but designing high-performing networks that effectively solve targeted problems remains challenging. We are developing genenet, a Python package to rapidly discover, train, and deploy high-performing neural network architectures for SBF-SEM segmentation with little user intervention. Here, we demonstrate how to use genenet to train an ensemble of segmentation networks for a human platelet tissue sample. Initial results indicate this approach is viable for accelerating the segmentation process.
AbstractList Today, serial block-face scanning electron microscopy (SBF-SEM) is capable of producing teravoxel-scale 3D images of biological structures at nanometer-scale resolutions. Image segmentation is fundamental to data analysis workflows in biological electron microscopy (EM), but SBF-SEM datasets can greatly exceed the manual segmentation capacity of a laboratory. Fast automated segmentation algorithms would alleviate this problem, but practical solutions remain unavailable for many biological problems of interest. Segmentation algorithms using deep neural networks have recently demonstrated significant performance gains, but designing high-performing networks that effectively solve targeted problems remains challenging. We are developing genenet, a Python package to rapidly discover, train, and deploy high-performing neural network architectures for SBF-SEM segmentation with little user intervention. Here, we demonstrate how to use genenet to train an ensemble of segmentation networks for a human platelet tissue sample. Initial results indicate this approach is viable for accelerating the segmentation process.
Author Guay, Matthew
Emam, Zeyad
Anderson, Adam
Leapman, Richard
Author_xml – sequence: 1
  givenname: Matthew
  surname: Guay
  fullname: Guay, Matthew
  organization: Nat. Inst. of Biomed. Imaging & Bioeng., Bethesda, MD, USA
– sequence: 2
  givenname: Zeyad
  surname: Emam
  fullname: Emam, Zeyad
  organization: Appl. Math., Univ. of Maryland, College Park, MD, USA
– sequence: 3
  givenname: Adam
  surname: Anderson
  fullname: Anderson, Adam
  organization: Comput. Sci., Univ. of Maryland, College Park, MD, USA
– sequence: 4
  givenname: Richard
  surname: Leapman
  fullname: Leapman, Richard
  organization: Nat. Inst. of Biomed. Imaging & Bioeng., Bethesda, MD, USA
BookMark eNotkM9KAzEYxKMoWGsfQLzkBbbm2_zZ5Ki1aqHgQT2XbPxSYnc3JUmRvr0rdi4_mBnmMNfkYogDEnILbA7AzP3q_XE1rxnoueaKK8bPyMw0GiTX6s9ozskEjJCVFrK-IrOcv9moRgjOxITYJ8xhO4RhS78Q93TAQ7LdiPIT0y7TEqk9lNjbgjTjtseh2BLiQH1Mo5HCWG676HaVtw4pduhKGuM-uBSzi_vjDbn0tss4O3FKPp-XH4vXav32slo8rKsAjSyVVsZL78BhjchaK5hxtQNjRQ21ZoBGMetb3lhsAbzy0AqQrbIWtHSm4VNy978bEHGzT6G36bg5ncJ_AXiwWVs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI.2018.8363603
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISBN 9781538636367
1538636360
EISSN 1945-8452
EndPage 408
ExternalDocumentID 8363603
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-869f5fc1ce2ee0ba409c2c19a4212801e960afb37aeb11f6f1b415b6aa185c973
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:43 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-869f5fc1ce2ee0ba409c2c19a4212801e960afb37aeb11f6f1b415b6aa185c973
PageCount 4
ParticipantIDs ieee_primary_8363603
PublicationCentury 2000
PublicationDate 2018-April
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-April
PublicationDecade 2010
PublicationTitle 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
PublicationTitleAbbrev ISBI
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.1562653
Snippet Today, serial block-face scanning electron microscopy (SBF-SEM) is capable of producing teravoxel-scale 3D images of biological structures at nanometer-scale...
SourceID ieee
SourceType Publisher
StartPage 405
SubjectTerms automated segmentation
Biology
Convolutional codes
Deep learning
electron microscopy
Image segmentation
Neural networks
Scanning electron microscopy
serial block-face imaging
Training data
Title Designing deep neural networks to automate segmentation for serial block-face electron microscopy
URI https://ieeexplore.ieee.org/document/8363603
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7agqAXta34JgeP7na3-776ohUqghZ6K0l2IlK7W-zuof56J9ltfeDB04aFkJCEfDOZb74BuBDoBDKW5JvIWFi-UtISZJhb0kkjhejFsdEpGD2Eg7F_PwkmDbjc5MIgoiGfoa2bJpaf5rLUT2W92NPqVl4TmlGSVLlam_cUgkKfXPM6cOk6SW_4dDXU3K3Yrvv9KKBi8ONuF0brkSvayMwuC2HLj1-ijP-d2h50vzL12OMGg_ahgVkbtqoCk6s27HyTG-wAvzF0DWqzFHHBtJYlf6OPYYIvWZEzXhY52bDIlvgyr9OSMkaGLauOKhMEfjNLcRp3XUGHzTWpT6e3rLowvrt9vh5YdYkF65XshsKKw0QFSroS-4iO4OTtyb50E64DxQReSA4OV8KLON3prgqVKwjxRcg54bxMIu8AWlme4SGwKEy56PsiMYI9ni9SFUlXhMp36V4I3CPo6GWbLioVjWm9Ysd__z6Bbb11FUfmFFrFe4lnBP-FODf7_gkTJbIS
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwFD5BjFFfVMB4tw8-OqBs7PLqhYACMRES3kjbnRqDMCLbA_56T7eBl_jg05olS5e26fed9jvfAbiSWG8qX1FsonxpOVorSxIxt1Q99DSi7fupT0Gv77aHzsOoOSrA9ToXBhFT8RlWTTO9yw8jlZijsppvG3crewM2iVf7bpattT5RITB0KDjPry55Pah1nm86Rr3lV_Mvf5RQSRGktQe9Vd-ZcGRSTWJZVR-_bBn_-3P7UPnK1WNPaxQ6gALOSrCVlZhclmD3m-FgGcRdKtigNgsR58y4WYo3eqRa8AWLIyaSOCIWi2yBL9M8MWnGiNqybLEySfA3sbSgflc1dNjUyPpMgsuyAsPW_eC2beVFFqxXYg6x5buBbmrFFTYQ61JQvKcaigfCXBUTfCGFOEJL2xO0q3Ptai4J86UrBCG9Cjz7EIqzaIZHwDw3FLLhyCC17LEdGWpPcelqh9PO0OTHUDbDNp5nPhrjfMRO_n59CdvtQa877nb6j6ewY6YxU8ycQTF-T_CcyEAsL9I18AmOHbVd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+15th+International+Symposium+on+Biomedical+Imaging+%28ISBI+2018%29&rft.atitle=Designing+deep+neural+networks+to+automate+segmentation+for+serial+block-face+electron+microscopy&rft.au=Guay%2C+Matthew&rft.au=Emam%2C+Zeyad&rft.au=Anderson%2C+Adam&rft.au=Leapman%2C+Richard&rft.date=2018-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=405&rft.epage=408&rft_id=info:doi/10.1109%2FISBI.2018.8363603&rft.externalDocID=8363603