Improving LBP features for gender classification

Automatic gender classification aims at analyzing the face image to recognize gender with computer, in which feature extraction is one key step. The LBP (local binary pattern) feature has essential applications in face analysis and has been applied in gender recognition. The normally adopted LBP fea...

Full description

Saved in:
Bibliographic Details
Published in2008 International Conference on Wavelet Analysis and Pattern Recognition Vol. 1; pp. 373 - 377
Main Authors Yuchun Fang, Zhan Wang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2008
Subjects
Online AccessGet full text
ISBN9781424422388
1424422388
ISSN2158-5695
DOI10.1109/ICWAPR.2008.4635807

Cover

Abstract Automatic gender classification aims at analyzing the face image to recognize gender with computer, in which feature extraction is one key step. The LBP (local binary pattern) feature has essential applications in face analysis and has been applied in gender recognition. The normally adopted LBP feature will encounter dimension explosion with the increase of sampling density of LBP operator, which could not remarkably improve the performance of gender classification. In this paper, we present two simple methods to improve the common LBP feature, i.e., fusing low-density LBP features and decreasing the dimension of high density LBP feature with PCA (principle component analysis), both of which could drastically lower the feature dimension while preserving the precision. Experiments are performed on FERET upright face database. The results illustrate the drawbacks of general LBP feature and identify the merit of our improved feature extraction algorithms.
AbstractList Automatic gender classification aims at analyzing the face image to recognize gender with computer, in which feature extraction is one key step. The LBP (local binary pattern) feature has essential applications in face analysis and has been applied in gender recognition. The normally adopted LBP feature will encounter dimension explosion with the increase of sampling density of LBP operator, which could not remarkably improve the performance of gender classification. In this paper, we present two simple methods to improve the common LBP feature, i.e., fusing low-density LBP features and decreasing the dimension of high density LBP feature with PCA (principle component analysis), both of which could drastically lower the feature dimension while preserving the precision. Experiments are performed on FERET upright face database. The results illustrate the drawbacks of general LBP feature and identify the merit of our improved feature extraction algorithms.
Author Yuchun Fang
Zhan Wang
Author_xml – sequence: 1
  surname: Yuchun Fang
  fullname: Yuchun Fang
  organization: Sch. of Comput. Eng. & Sci., Shanghai Univ., Shanghai
– sequence: 2
  surname: Zhan Wang
  fullname: Zhan Wang
  organization: Sch. of Comput. Eng. & Sci., Shanghai Univ., Shanghai
BookMark eNpVkM1KAzEcxCO2YFv3CXrZF9g1yT-fx7poXViwlIrHks0mJdLulmQVfHsr9uJchjn8hmHmaNIPvUNoSXBJCNYPdfW-2mxLirEqmQCusLxBmZaKMMoYpaD57b-s1ATNKOGq4ELzKZr_ohoTxdUdylL6wBcxDsD1DOH6dI7DV-gPefO4yb0z42d0KfdDzA-u71zM7dGkFHywZgxDf4-m3hyTy66-QG_PT7vqpWhe13W1aopAJB8LxT3xndWyc152xmLoqBIt5mCt0EANA61sC8JcNkpJNLFOM0EMlt6aFmCBln-9wTm3P8dwMvF7fz0AfgAt8kud
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICWAPR.2008.4635807
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Libary (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424422395
1424422396
EndPage 377
ExternalDocumentID 4635807
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-85f1fdc97def7dac03d286b053cc6932a4398cb36a69577191ce9461a07fcab33
IEDL.DBID RIE
ISBN 9781424422388
1424422388
ISSN 2158-5695
IngestDate Wed Aug 27 01:49:52 EDT 2025
IsPeerReviewed false
IsScholarly true
LCCN 2008901858
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-85f1fdc97def7dac03d286b053cc6932a4398cb36a69577191ce9461a07fcab33
PageCount 5
ParticipantIDs ieee_primary_4635807
PublicationCentury 2000
PublicationDate 2008-Aug.
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-Aug.
PublicationDecade 2000
PublicationTitle 2008 International Conference on Wavelet Analysis and Pattern Recognition
PublicationTitleAbbrev ICWAPR
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453359
ssj0003177784
Score 1.9049065
Snippet Automatic gender classification aims at analyzing the face image to recognize gender with computer, in which feature extraction is one key step. The LBP (local...
SourceID ieee
SourceType Publisher
StartPage 373
SubjectTerms Classification algorithms
Face
Face recognition
Feature extraction
Gender classification
Histograms
LBP
Pattern recognition
PCA
Principal component analysis
Title Improving LBP features for gender classification
URI https://ieeexplore.ieee.org/document/4635807
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELXanuDC0iJ2-cARt0nt2M4RKlBBgCpERW-VV4SQWgTpha9n7Cws4sAtziWZONZ7Hr95g9AJzSIyeZJm1hImqCCaOkXcMNfcaSYSFQWyd3w8ZdezbNZCp00tjHMuis9cP1zGs3y7NKuQKhswHg7tRBu14Tcra7WafApQE0oraA5jwEUhYsNhADVJMp5ndV0XIKKUtd1TPa4cidIkH1yNHs8m96XOsnrkj94rEXouN9Bt_dKl4uSlvyp033z88nP8b1SbqPdV5IcnDXxtoZZbbKP1b_6EXZQ0KQd8cz7B3kUX0HcMRBc_xR502AT2HeRGcYZ7aHp58TAak6rFAnkG3lAQmfnUW5ML67ywyiTUDiXXsDKN4UDtFPAVaTTlCr6fELC5My5nPFWJ8EZpSndQZ7FcuF2EU5toy4awvplmkjPpvc69gY0uU4radA91Q-zz19JFY16Fvf_37QO0ViozgtTuEHWKt5U7Avgv9HGc90-Fr6Zd
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcgAuLC1iJweOuE1qx3aOUIFaaKsKtaK3yitCSC2C9MLX4zgLizhwi3NJJo71nsdv3gBc4Ngjk0VRrDUiDDMksRHIdBJJjSQsFF4gO6K9KbmbxbMaXFa1MMYYLz4zrezSn-XrpVplqbI2odmhHVuDdYf7JM6rtaqMiiMnGBfgnI0dMjLmWw47WOMopklcVnY5TOS8NHwqx4UnURQm7X738Wr8kCsti4f-6L7iwed2G4bla-eak5fWKpUt9fHL0fG_ce1A86vMLxhXALYLNbPYg61vDoUNCKukQzC4HgfWeB_Q98BR3eDJd6ELVMa_M8GRn-MmTG9vJt0eKposoGfHHFLEYxtZrRKmjWVaqBDrDqfSrU2lqCN3wjEWriSmwn0_xtz2TpmE0EiEzCohMd6H-mK5MAcQRDqUmnTcCieScEq4tTKxym11iRBYR4fQyGKfv-Y-GvMi7KO_b5_DRm8yHMwH_dH9MWzmOo1MeHcC9fRtZU4dGUjlmf8HPgF2eamq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+International+Conference+on+Wavelet+Analysis+and+Pattern+Recognition&rft.atitle=Improving+LBP+features+for+gender+classification&rft.au=Yuchun+Fang&rft.au=Zhan+Wang&rft.date=2008-08-01&rft.pub=IEEE&rft.isbn=9781424422388&rft.issn=2158-5695&rft.volume=1&rft.spage=373&rft.epage=377&rft_id=info:doi/10.1109%2FICWAPR.2008.4635807&rft.externalDocID=4635807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-5695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-5695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-5695&client=summon