Improving LBP features for gender classification
Automatic gender classification aims at analyzing the face image to recognize gender with computer, in which feature extraction is one key step. The LBP (local binary pattern) feature has essential applications in face analysis and has been applied in gender recognition. The normally adopted LBP fea...
Saved in:
Published in | 2008 International Conference on Wavelet Analysis and Pattern Recognition Vol. 1; pp. 373 - 377 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2008
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424422388 1424422388 |
ISSN | 2158-5695 |
DOI | 10.1109/ICWAPR.2008.4635807 |
Cover
Abstract | Automatic gender classification aims at analyzing the face image to recognize gender with computer, in which feature extraction is one key step. The LBP (local binary pattern) feature has essential applications in face analysis and has been applied in gender recognition. The normally adopted LBP feature will encounter dimension explosion with the increase of sampling density of LBP operator, which could not remarkably improve the performance of gender classification. In this paper, we present two simple methods to improve the common LBP feature, i.e., fusing low-density LBP features and decreasing the dimension of high density LBP feature with PCA (principle component analysis), both of which could drastically lower the feature dimension while preserving the precision. Experiments are performed on FERET upright face database. The results illustrate the drawbacks of general LBP feature and identify the merit of our improved feature extraction algorithms. |
---|---|
AbstractList | Automatic gender classification aims at analyzing the face image to recognize gender with computer, in which feature extraction is one key step. The LBP (local binary pattern) feature has essential applications in face analysis and has been applied in gender recognition. The normally adopted LBP feature will encounter dimension explosion with the increase of sampling density of LBP operator, which could not remarkably improve the performance of gender classification. In this paper, we present two simple methods to improve the common LBP feature, i.e., fusing low-density LBP features and decreasing the dimension of high density LBP feature with PCA (principle component analysis), both of which could drastically lower the feature dimension while preserving the precision. Experiments are performed on FERET upright face database. The results illustrate the drawbacks of general LBP feature and identify the merit of our improved feature extraction algorithms. |
Author | Yuchun Fang Zhan Wang |
Author_xml | – sequence: 1 surname: Yuchun Fang fullname: Yuchun Fang organization: Sch. of Comput. Eng. & Sci., Shanghai Univ., Shanghai – sequence: 2 surname: Zhan Wang fullname: Zhan Wang organization: Sch. of Comput. Eng. & Sci., Shanghai Univ., Shanghai |
BookMark | eNpVkM1KAzEcxCO2YFv3CXrZF9g1yT-fx7poXViwlIrHks0mJdLulmQVfHsr9uJchjn8hmHmaNIPvUNoSXBJCNYPdfW-2mxLirEqmQCusLxBmZaKMMoYpaD57b-s1ATNKOGq4ELzKZr_ohoTxdUdylL6wBcxDsD1DOH6dI7DV-gPefO4yb0z42d0KfdDzA-u71zM7dGkFHywZgxDf4-m3hyTy66-QG_PT7vqpWhe13W1aopAJB8LxT3xndWyc152xmLoqBIt5mCt0EANA61sC8JcNkpJNLFOM0EMlt6aFmCBln-9wTm3P8dwMvF7fz0AfgAt8kud |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICWAPR.2008.4635807 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Libary (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781424422395 1424422396 |
EndPage | 377 |
ExternalDocumentID | 4635807 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-85f1fdc97def7dac03d286b053cc6932a4398cb36a69577191ce9461a07fcab33 |
IEDL.DBID | RIE |
ISBN | 9781424422388 1424422388 |
ISSN | 2158-5695 |
IngestDate | Wed Aug 27 01:49:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
LCCN | 2008901858 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-85f1fdc97def7dac03d286b053cc6932a4398cb36a69577191ce9461a07fcab33 |
PageCount | 5 |
ParticipantIDs | ieee_primary_4635807 |
PublicationCentury | 2000 |
PublicationDate | 2008-Aug. |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-Aug. |
PublicationDecade | 2000 |
PublicationTitle | 2008 International Conference on Wavelet Analysis and Pattern Recognition |
PublicationTitleAbbrev | ICWAPR |
PublicationYear | 2008 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000453359 ssj0003177784 |
Score | 1.9049065 |
Snippet | Automatic gender classification aims at analyzing the face image to recognize gender with computer, in which feature extraction is one key step. The LBP (local... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 373 |
SubjectTerms | Classification algorithms Face Face recognition Feature extraction Gender classification Histograms LBP Pattern recognition PCA Principal component analysis |
Title | Improving LBP features for gender classification |
URI | https://ieeexplore.ieee.org/document/4635807 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELXanuDC0iJ2-cARt0nt2M4RKlBBgCpERW-VV4SQWgTpha9n7Cws4sAtziWZONZ7Hr95g9AJzSIyeZJm1hImqCCaOkXcMNfcaSYSFQWyd3w8ZdezbNZCp00tjHMuis9cP1zGs3y7NKuQKhswHg7tRBu14Tcra7WafApQE0oraA5jwEUhYsNhADVJMp5ndV0XIKKUtd1TPa4cidIkH1yNHs8m96XOsnrkj94rEXouN9Bt_dKl4uSlvyp033z88nP8b1SbqPdV5IcnDXxtoZZbbKP1b_6EXZQ0KQd8cz7B3kUX0HcMRBc_xR502AT2HeRGcYZ7aHp58TAak6rFAnkG3lAQmfnUW5ML67ywyiTUDiXXsDKN4UDtFPAVaTTlCr6fELC5My5nPFWJ8EZpSndQZ7FcuF2EU5toy4awvplmkjPpvc69gY0uU4radA91Q-zz19JFY16Fvf_37QO0ViozgtTuEHWKt5U7Avgv9HGc90-Fr6Zd |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcgAuLC1iJweOuE1qx3aOUIFaaKsKtaK3yitCSC2C9MLX4zgLizhwi3NJJo71nsdv3gBc4Ngjk0VRrDUiDDMksRHIdBJJjSQsFF4gO6K9KbmbxbMaXFa1MMYYLz4zrezSn-XrpVplqbI2odmhHVuDdYf7JM6rtaqMiiMnGBfgnI0dMjLmWw47WOMopklcVnY5TOS8NHwqx4UnURQm7X738Wr8kCsti4f-6L7iwed2G4bla-eak5fWKpUt9fHL0fG_ce1A86vMLxhXALYLNbPYg61vDoUNCKukQzC4HgfWeB_Q98BR3eDJd6ELVMa_M8GRn-MmTG9vJt0eKposoGfHHFLEYxtZrRKmjWVaqBDrDqfSrU2lqCN3wjEWriSmwn0_xtz2TpmE0EiEzCohMd6H-mK5MAcQRDqUmnTcCieScEq4tTKxym11iRBYR4fQyGKfv-Y-GvMi7KO_b5_DRm8yHMwH_dH9MWzmOo1MeHcC9fRtZU4dGUjlmf8HPgF2eamq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+International+Conference+on+Wavelet+Analysis+and+Pattern+Recognition&rft.atitle=Improving+LBP+features+for+gender+classification&rft.au=Yuchun+Fang&rft.au=Zhan+Wang&rft.date=2008-08-01&rft.pub=IEEE&rft.isbn=9781424422388&rft.issn=2158-5695&rft.volume=1&rft.spage=373&rft.epage=377&rft_id=info:doi/10.1109%2FICWAPR.2008.4635807&rft.externalDocID=4635807 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-5695&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-5695&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-5695&client=summon |