Strike a pose: tracking people by finding stylized poses

We develop an algorithm for finding and kinematically tracking multiple people in long sequences. Our basic assumption is that people tend to take on certain canonical poses, even when performing unusual activities like throwing a baseball or figure skating. We build a person detector that quite acc...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 271 - 278 vol. 1
Main Authors Ramanan, D., Forsyth, D.A., Zisserman, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We develop an algorithm for finding and kinematically tracking multiple people in long sequences. Our basic assumption is that people tend to take on certain canonical poses, even when performing unusual activities like throwing a baseball or figure skating. We build a person detector that quite accurately detects and localizes limbs of people in lateral walking poses. We use the estimated limbs from a detection to build a discriminative appearance model; we assume the features that discriminate a figure in one frame will discriminate the figure in other frames. We then use the models as limb detectors in a pictorial structure framework, detecting figures in unrestricted poses in both previous and successive frames. We have run our tracker on hundreds of thousands of frames, and present and apply a methodology for evaluating tracking on such a large scale. We test our tracker on real sequences including a feature-length film, an hour of footage from a public park, and various sports sequences. We find that we can quite accurately automatically find and track multiple people interacting with each other while performing fast and unusual motions.
AbstractList We develop an algorithm for finding and kinematically tracking multiple people in long sequences. Our basic assumption is that people tend to take on certain canonical poses, even when performing unusual activities like throwing a baseball or figure skating. We build a person detector that quite accurately detects and localizes limbs of people in lateral walking poses. We use the estimated limbs from a detection to build a discriminative appearance model; we assume the features that discriminate a figure in one frame will discriminate the figure in other frames. We then use the models as limb detectors in a pictorial structure framework, detecting figures in unrestricted poses in both previous and successive frames. We have run our tracker on hundreds of thousands of frames, and present and apply a methodology for evaluating tracking on such a large scale. We test our tracker on real sequences including a feature-length film, an hour of footage from a public park, and various sports sequences. We find that we can quite accurately automatically find and track multiple people interacting with each other while performing fast and unusual motions.
Author Ramanan, D.
Forsyth, D.A.
Zisserman, A.
Author_xml – sequence: 1
  givenname: D.
  surname: Ramanan
  fullname: Ramanan, D.
  organization: Univ. of California, Berkeley, CA, USA
– sequence: 2
  givenname: D.A.
  surname: Forsyth
  fullname: Forsyth, D.A.
  organization: Univ. of California, Berkeley, CA, USA
– sequence: 3
  givenname: A.
  surname: Zisserman
  fullname: Zisserman, A.
BookMark eNpNTktLxDAYDLqCu-sePXnJH2j98k68SXFVWFB8XZe4-SJxa1uaXuqvtz4ODgMDM8MwCzJr2gYJOWVQMgbuvHq5fyg5gCqFUAdkzkCLQjvmDskCjHaKC8P57F9wTFY5v8ME4YSVfE7s49CnPVJPuzbjBR16v9un5o122HY10teRxtSEbycPY50-Mfw08wk5ir7OuPrTJXleXz1VN8Xm7vq2utwUiRk1FFYCGoeRO2O1Cxa4nr4HFQ0zUfEgbZzopEAhuQ6MW1SagUQZotp5EEty9rubEHHb9enD9-OWSW24seILyHRIMg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.335
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 278 vol. 1
ExternalDocumentID 1467278
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-840e79ef297869d8026110d5f717f52d48f48f943e3426d128e56104e4df5ca03
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-840e79ef297869d8026110d5f717f52d48f48f943e3426d128e56104e4df5ca03
ParticipantIDs ieee_primary_1467278
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 2.0834806
Snippet We develop an algorithm for finding and kinematically tracking multiple people in long sequences. Our basic assumption is that people tend to take on certain...
SourceID ieee
SourceType Publisher
StartPage 271
SubjectTerms Data mining
Detectors
Humans
Kinematics
Large-scale systems
Legged locomotion
Predictive models
Surveillance
Testing
Tracking
Title Strike a pose: tracking people by finding stylized poses
URI https://ieeexplore.ieee.org/document/1467278
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEF7UU0-21dI3e-ix6yO72ez2Ki1SaJG2Fm9ikgmIRcXEg_76zmweltJDIYfsJCybIcPMN0_G7oyWOlRWCmVsImgekrCmDyKMVCQDT1LxNWVbvOrhWD1P_EmN3Ve1MADgks-gQ7culh-voi25yrok1V5g6qyOwC2v1ar8KVRjagqYR2uJyEbbKqLg0TQWF_nUUmjbtzmEtz498IpOPOXaHppxdgefo7fc9SJpJNyPESxOAz012Ut59jzxZNHZZmEn2v9q6_jfjztm7UOtHx9VWuyE1WB5ypqFccoL0U-RVM5_KGktZt6zzXwBfMbXqxQeeLaZReR553laOg933IXEkZJmu6_5HjekN9M2Gz89fgyGopjEIOZoXmQCUSAEFhIPuaRtbAi49XuxnyAYTHwvVibByyoJEjV-jDoPyC5ToOLEj2Y9ecYay9USzhk3tA-KPdk61NrGABiIPNy6rxOlggvWIt5M13mzjWnBlsu_yVfsyPVSdT6Ra9bINlu4QSshC2_d7_ENbh6v1A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_DoAu1u212vRIIKhCgYboS204RggNBygF_vzvaBMR5MeuhOm8120snMN09CHqTLXV8ozoRUEcN5SExJC5gfiIB7Nsfia8y26LudkXgdO-MSeSxqYQDAJJ9BHW9NLD9cBht0lTVQqm1PHpBDrfcdK63WKjwqWGUqM6CHa66xjauKmIKN81hM7NPlzFWWSkG8cvCBnfXiyddq346z0focvKfOF45D4X4MYTE6qF0hvfz0aerJvL5J_Hqw-9XY8b-fd0Jq-2o_Oij02CkpweKMVDLzlGbCH2tSPgEip1WJ_EjWsznQKV0tY3iiyXoaoO-dponp1N9SExTXlDjZfs12ekN8M66RUft52OqwbBYDm2kDI2EaB4KnILI1l1wVSoRuVjN0Ig0HI8cOhYz0pQQHrnV-qLUeoGUmQISRE0yb_JyUF8sFXBAqcR8t-GjtYHMbCSAhsPXWlhsJ4V2SKvJmskrbbUwytlz9Tb4nR51hrzvpvvTfrsmx6axqPCQ3pJysN3CrbYbEvzO_yjfVoLMd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Strike+a+pose%3A+tracking+people+by+finding+stylized+poses&rft.au=Ramanan%2C+D.&rft.au=Forsyth%2C+D.A.&rft.au=Zisserman%2C+A.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=271&rft.epage=278+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.335&rft.externalDocID=1467278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon