The combining kernel PCA with PSO-SVM for chaotic time series prediction model

Chaotic time series analysis or forecasting is an important and complex problem in machine learning. As an effective tool, support vector machine (SVM) has been broadly adopted in pattern recognition and machine learning fields. In developing a successful SVM classifier, eliminating noise and extrac...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 1; pp. 467 - 472
Main Authors Qi-Song Chen, Xin Zhang, Shi-Huan Xiong, Xiao-Wei Chen
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chaotic time series analysis or forecasting is an important and complex problem in machine learning. As an effective tool, support vector machine (SVM) has been broadly adopted in pattern recognition and machine learning fields. In developing a successful SVM classifier, eliminating noise and extracting feature are very important. This paper proposes the application of kernel PCA to LS-SVM for feature extraction. Then PSO algorithm is employed to optimization of these parameters in LS-SVM. The novel chaotic time series analysis model integrates the advantages of wavelet transform, KPCA, PSO and LS-SVM. Compared with other predictors, this model has greater generality ability and higher accuracy.
AbstractList Chaotic time series analysis or forecasting is an important and complex problem in machine learning. As an effective tool, support vector machine (SVM) has been broadly adopted in pattern recognition and machine learning fields. In developing a successful SVM classifier, eliminating noise and extracting feature are very important. This paper proposes the application of kernel PCA to LS-SVM for feature extraction. Then PSO algorithm is employed to optimization of these parameters in LS-SVM. The novel chaotic time series analysis model integrates the advantages of wavelet transform, KPCA, PSO and LS-SVM. Compared with other predictors, this model has greater generality ability and higher accuracy.
Author Xiao-Wei Chen
Qi-Song Chen
Xin Zhang
Shi-Huan Xiong
Author_xml – sequence: 1
  surname: Qi-Song Chen
  fullname: Qi-Song Chen
  organization: Coll. of Comput. Sci. & Technol., Guizhou Univ., Guiyang, China
– sequence: 2
  surname: Xin Zhang
  fullname: Xin Zhang
– sequence: 3
  surname: Shi-Huan Xiong
  fullname: Shi-Huan Xiong
– sequence: 4
  surname: Xiao-Wei Chen
  fullname: Xiao-Wei Chen
  organization: Coll. of Comput. Sci. & Technol., Guizhou Univ., Guiyang, China
BookMark eNo1kM1OwkAUhccIiYK8gG7mBYpz7-20M0vS-EMCQgIad2SmvZVR2pK2ifHtJRHP5uRbnG9xRmJQNzULcQtqCqDs_TxbLrIpKmWnGgG1NhdiBDHGMaWK8FJMbGr-GWkgrhESFQHR-1CMTjtjAazGKzHpuk91SqwxTehavGz3LPOm8qEO9Yf84rbmg1xnM_kd-r1cb1bR5m0py6aV-d41fchlHyqWHbeBO3lsuQh5H5paVk3BhxsxLN2h48m5x-L18WGbPUeL1dM8my2iAKnuI0PowCdUEpNT3iPnBTNay-S9Zo4T8oU3Chip5NyhgcSl2hqM87R0QGNx9-cNzLw7tqFy7c_u_A39AjfMVSE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212558
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 472
ExternalDocumentID 5212558
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-832a1b63f3e3a0bb2ecdee299e3bb5ee463bdb801e23feca2816a759824c7fa13
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:21:16 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-832a1b63f3e3a0bb2ecdee299e3bb5ee463bdb801e23feca2816a759824c7fa13
PageCount 6
ParticipantIDs ieee_primary_5212558
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4239205
Snippet Chaotic time series analysis or forecasting is an important and complex problem in machine learning. As an effective tool, support vector machine (SVM) has...
SourceID ieee
SourceType Publisher
StartPage 467
SubjectTerms Chaos
Feature extraction
Kernel
KPCA
Machine learning
Pattern recognition
Prediction model
Predictive models
Principal component analysis
PSO
Support vector machine classification
Support vector machines
SVM
Time series analysis
Title The combining kernel PCA with PSO-SVM for chaotic time series prediction model
URI https://ieeexplore.ieee.org/document/5212558
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx4ttN1uW4-mkaCxSIIYbmR3O40GAwTLxV_vzLbFaDx46zZNH9vZzGPn-z7GrpTOI9vVmOUhJiigXCc2OnaU7yqZ6RCMLV2ko3A4DR5mctZg1zssDADY5jPo0aHdy89WZkulsj7hTKWMm6yJiVuJ1drVU4gaPKqopOw4wsTDCub5Xug6mIrNalyXiNAx1XRP1VjUgBr3pn-fpI9JSWVZPfGH9Ir1PIM2S-t3LhtOFr1toXvm8xed438_ap91vzF-fLzzXgesActD1q5FHni15jtshIbE0Sy1VZLgC9gs4Z2Pk1tOJVw-njw5k5eUY-zLzataoR1y0qvnZNrwwdcb2gmiv8-t6E6XTQd3z8nQqUQYnDeMLAoHV7zydChyAUK5WvtgMgB0YiC0lgBBKHSm0c-BL3Iwyo-9UEVECxiYKFeeOGKt5WoJx4xLP5CBRzykbh7g5Yqo3jEExVsQ54w8YR2anvm65NmYVzNz-vfpM7ZX7uxQ6-w5axWbLVxggFDoS2sZX6t7sU8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSECsZv9-DRQtvttvVoGgkoRRLAcCO722k0mEKwXPz1zm5bjMaDt27T9GM7m5mdmfceITdCpoHpakxSHzcoIGwrVDK0hGsLnkgflEldxEO_N_UeZ3xWI7dbLAwAmOYzaOtDU8tPlmqjU2UdjTPlPNwhu-j3uVOgtbYZFU0OHpRkUmYc4NbDSOa5jm9buBmbVcguFqBrqgifyjGrIDX2XacfxYOoILMsn_lDfMX4nm6DxNVbFy0ni_Yml231-YvQ8b-fdUBa3yg_Otr6r0NSg-yINCqZB1qu-iYZoilRNExptCToAtYZvNNRdE91EpeOxs_W-CWmGP1S9SqWaIlUK9ZTbdzwQVdrXQvS_58a2Z0WmXYfJlHPKmUYrDeMLXIL17xwpM9SBkzYUrqgEgB0Y8Ck5ACez2Qi0dOBy1JQwg0dXwSaGNBTQSocdkzq2TKDE0K563HP0Uykdurh5UKTvWMQirfQrDP8lDT19MxXBdPGvJyZs79PX5O93iQezAf94dM52S_qPLqR9oLU8_UGLjFcyOWVsZIvJaG0mA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=The+combining+kernel+PCA+with+PSO-SVM+for+chaotic+time+series+prediction+model&rft.au=Qi-Song+Chen&rft.au=Xin+Zhang&rft.au=Shi-Huan+Xiong&rft.au=Xiao-Wei+Chen&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=1&rft.spage=467&rft.epage=472&rft_id=info:doi/10.1109%2FICMLC.2009.5212558&rft.externalDocID=5212558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon