The combining kernel PCA with PSO-SVM for chaotic time series prediction model
Chaotic time series analysis or forecasting is an important and complex problem in machine learning. As an effective tool, support vector machine (SVM) has been broadly adopted in pattern recognition and machine learning fields. In developing a successful SVM classifier, eliminating noise and extrac...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 1; pp. 467 - 472 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chaotic time series analysis or forecasting is an important and complex problem in machine learning. As an effective tool, support vector machine (SVM) has been broadly adopted in pattern recognition and machine learning fields. In developing a successful SVM classifier, eliminating noise and extracting feature are very important. This paper proposes the application of kernel PCA to LS-SVM for feature extraction. Then PSO algorithm is employed to optimization of these parameters in LS-SVM. The novel chaotic time series analysis model integrates the advantages of wavelet transform, KPCA, PSO and LS-SVM. Compared with other predictors, this model has greater generality ability and higher accuracy. |
---|---|
AbstractList | Chaotic time series analysis or forecasting is an important and complex problem in machine learning. As an effective tool, support vector machine (SVM) has been broadly adopted in pattern recognition and machine learning fields. In developing a successful SVM classifier, eliminating noise and extracting feature are very important. This paper proposes the application of kernel PCA to LS-SVM for feature extraction. Then PSO algorithm is employed to optimization of these parameters in LS-SVM. The novel chaotic time series analysis model integrates the advantages of wavelet transform, KPCA, PSO and LS-SVM. Compared with other predictors, this model has greater generality ability and higher accuracy. |
Author | Xiao-Wei Chen Qi-Song Chen Xin Zhang Shi-Huan Xiong |
Author_xml | – sequence: 1 surname: Qi-Song Chen fullname: Qi-Song Chen organization: Coll. of Comput. Sci. & Technol., Guizhou Univ., Guiyang, China – sequence: 2 surname: Xin Zhang fullname: Xin Zhang – sequence: 3 surname: Shi-Huan Xiong fullname: Shi-Huan Xiong – sequence: 4 surname: Xiao-Wei Chen fullname: Xiao-Wei Chen organization: Coll. of Comput. Sci. & Technol., Guizhou Univ., Guiyang, China |
BookMark | eNo1kM1OwkAUhccIiYK8gG7mBYpz7-20M0vS-EMCQgIad2SmvZVR2pK2ifHtJRHP5uRbnG9xRmJQNzULcQtqCqDs_TxbLrIpKmWnGgG1NhdiBDHGMaWK8FJMbGr-GWkgrhESFQHR-1CMTjtjAazGKzHpuk91SqwxTehavGz3LPOm8qEO9Yf84rbmg1xnM_kd-r1cb1bR5m0py6aV-d41fchlHyqWHbeBO3lsuQh5H5paVk3BhxsxLN2h48m5x-L18WGbPUeL1dM8my2iAKnuI0PowCdUEpNT3iPnBTNay-S9Zo4T8oU3Chip5NyhgcSl2hqM87R0QGNx9-cNzLw7tqFy7c_u_A39AjfMVSE |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212558 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 472 |
ExternalDocumentID | 5212558 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-832a1b63f3e3a0bb2ecdee299e3bb5ee463bdb801e23feca2816a759824c7fa13 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:21:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-832a1b63f3e3a0bb2ecdee299e3bb5ee463bdb801e23feca2816a759824c7fa13 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5212558 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.4239205 |
Snippet | Chaotic time series analysis or forecasting is an important and complex problem in machine learning. As an effective tool, support vector machine (SVM) has... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 467 |
SubjectTerms | Chaos Feature extraction Kernel KPCA Machine learning Pattern recognition Prediction model Predictive models Principal component analysis PSO Support vector machine classification Support vector machines SVM Time series analysis |
Title | The combining kernel PCA with PSO-SVM for chaotic time series prediction model |
URI | https://ieeexplore.ieee.org/document/5212558 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYHxnDx4ttN1uW4-mkaCxSIIYbmR3O40GAwTLxV_vzLbFaDx46zZNH9vZzGPn-z7GrpTOI9vVmOUhJiigXCc2OnaU7yqZ6RCMLV2ko3A4DR5mctZg1zssDADY5jPo0aHdy89WZkulsj7hTKWMm6yJiVuJ1drVU4gaPKqopOw4wsTDCub5Xug6mIrNalyXiNAx1XRP1VjUgBr3pn-fpI9JSWVZPfGH9Ir1PIM2S-t3LhtOFr1toXvm8xed438_ap91vzF-fLzzXgesActD1q5FHni15jtshIbE0Sy1VZLgC9gs4Z2Pk1tOJVw-njw5k5eUY-zLzataoR1y0qvnZNrwwdcb2gmiv8-t6E6XTQd3z8nQqUQYnDeMLAoHV7zydChyAUK5WvtgMgB0YiC0lgBBKHSm0c-BL3Iwyo-9UEVECxiYKFeeOGKt5WoJx4xLP5CBRzykbh7g5Yqo3jEExVsQ54w8YR2anvm65NmYVzNz-vfpM7ZX7uxQ6-w5axWbLVxggFDoS2sZX6t7sU8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSECsZv9-DRQtvttvVoGgkoRRLAcCO722k0mEKwXPz1zm5bjMaDt27T9GM7m5mdmfceITdCpoHpakxSHzcoIGwrVDK0hGsLnkgflEldxEO_N_UeZ3xWI7dbLAwAmOYzaOtDU8tPlmqjU2UdjTPlPNwhu-j3uVOgtbYZFU0OHpRkUmYc4NbDSOa5jm9buBmbVcguFqBrqgifyjGrIDX2XacfxYOoILMsn_lDfMX4nm6DxNVbFy0ni_Yml231-YvQ8b-fdUBa3yg_Otr6r0NSg-yINCqZB1qu-iYZoilRNExptCToAtYZvNNRdE91EpeOxs_W-CWmGP1S9SqWaIlUK9ZTbdzwQVdrXQvS_58a2Z0WmXYfJlHPKmUYrDeMLXIL17xwpM9SBkzYUrqgEgB0Y8Ck5ACez2Qi0dOBy1JQwg0dXwSaGNBTQSocdkzq2TKDE0K563HP0Uykdurh5UKTvWMQirfQrDP8lDT19MxXBdPGvJyZs79PX5O93iQezAf94dM52S_qPLqR9oLU8_UGLjFcyOWVsZIvJaG0mA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=The+combining+kernel+PCA+with+PSO-SVM+for+chaotic+time+series+prediction+model&rft.au=Qi-Song+Chen&rft.au=Xin+Zhang&rft.au=Shi-Huan+Xiong&rft.au=Xiao-Wei+Chen&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=1&rft.spage=467&rft.epage=472&rft_id=info:doi/10.1109%2FICMLC.2009.5212558&rft.externalDocID=5212558 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |