Object-Oriented Random Forest Classification for Enteromorpha Prolifera Detection with SAR Images

In this paper, a novel framework, called Object -- oriented random forest classification (OORFC), is proposed for Entheromorpha prolifera (E. prolifera) detection based on RADARSAT-2 Synthetic Aperture Radar (SAR) imagery obtained from 2011 to 2013 in the coastal areas in the Yellow Sea. Firstly, ea...

Full description

Saved in:
Bibliographic Details
Published in2016 International Conference on Virtual Reality and Visualization (ICVRV) pp. 119 - 125
Main Authors Cui Xie, Junyu Dong, Fangfang Sun, Lei Bing
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2016
Subjects
Online AccessGet full text
DOI10.1109/ICVRV.2016.27

Cover

Loading…
Abstract In this paper, a novel framework, called Object -- oriented random forest classification (OORFC), is proposed for Entheromorpha prolifera (E. prolifera) detection based on RADARSAT-2 Synthetic Aperture Radar (SAR) imagery obtained from 2011 to 2013 in the coastal areas in the Yellow Sea. Firstly, each SAR image is processed by multi-scale segmentation to generate patches with homogeneous attributes. Then a random forest classifier is trained based on the features of these patches. Finally, for a new coming SAR images, E. prolifera can be detected by the generated random forest classifier and the operational monitoring of E. prolifera blooms is achieved. Experiments on E.prolifera detection from multi-temporal SAR images are conducted for evaluation and results demonstrate our OORFC method's higher accuracy compared with the popular supervised classification methods (minimum distance and maximum likelihood). The capability of OORFC for E. prolifera bloom detection even during cloudy summer from SAR images can potentially facilitate the hazard management on the coastal environment.
AbstractList In this paper, a novel framework, called Object -- oriented random forest classification (OORFC), is proposed for Entheromorpha prolifera (E. prolifera) detection based on RADARSAT-2 Synthetic Aperture Radar (SAR) imagery obtained from 2011 to 2013 in the coastal areas in the Yellow Sea. Firstly, each SAR image is processed by multi-scale segmentation to generate patches with homogeneous attributes. Then a random forest classifier is trained based on the features of these patches. Finally, for a new coming SAR images, E. prolifera can be detected by the generated random forest classifier and the operational monitoring of E. prolifera blooms is achieved. Experiments on E.prolifera detection from multi-temporal SAR images are conducted for evaluation and results demonstrate our OORFC method's higher accuracy compared with the popular supervised classification methods (minimum distance and maximum likelihood). The capability of OORFC for E. prolifera bloom detection even during cloudy summer from SAR images can potentially facilitate the hazard management on the coastal environment.
Author Fangfang Sun
Junyu Dong
Cui Xie
Lei Bing
Author_xml – sequence: 1
  surname: Cui Xie
  fullname: Cui Xie
  organization: Dept. of Comput. Sci.& Technol., Ocean Univ. of China, Qingdao, China
– sequence: 2
  surname: Junyu Dong
  fullname: Junyu Dong
  email: dongjunyu@ouc.edu.cn
  organization: Dept. of Comput. Sci.& Technol., Ocean Univ. of China, Qingdao, China
– sequence: 3
  surname: Fangfang Sun
  fullname: Fangfang Sun
  organization: Emergency Response Tech. Center, Yantai Maritime Safety Adm., Yantai, China
– sequence: 4
  surname: Lei Bing
  fullname: Lei Bing
  organization: Emergency Response Tech. Center, Yantai Maritime Safety Adm., Yantai, China
BookMark eNotj09LwzAcQCPoQeeOnrzkC3Q2_5bkOOqmhUFl6q7j1_QXF1mbkQbEb29FT-_yePBuyOUQByTkjpULxkr7UFf73X7BS7ZccH1B5lYbpkpbKmaMuibQtJ_octGkgEPGju5g6GJPNzHhmGl1gnEMPjjIIQ7Ux0TXk5ZiH9P5CPQlxVPwmIA-Yp46v9JXyEf6utrRuocPHG_JlYfTiPN_zsj7Zv1WPRfb5qmuVtsiMK1yYVhnHEfmlF1abbl3ugXWatTcM21b2WrhpEfZgeTghDJSiG7pQE9HSqKYkfu_bkDEwzmFHtL3QVthmOHiB8t9UiU
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICVRV.2016.27
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509051885
1509051880
EndPage 125
ExternalDocumentID 7938182
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-81d8c2e1c5969792fc7ba1b7e72f179b4b73c4fe4da42ac358433d6ca797854e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:52 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-81d8c2e1c5969792fc7ba1b7e72f179b4b73c4fe4da42ac358433d6ca797854e3
PageCount 7
ParticipantIDs ieee_primary_7938182
PublicationCentury 2000
PublicationDate 2016-Sept.
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationTitle 2016 International Conference on Virtual Reality and Visualization (ICVRV)
PublicationTitleAbbrev ICVRV
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6804729
Snippet In this paper, a novel framework, called Object -- oriented random forest classification (OORFC), is proposed for Entheromorpha prolifera (E. prolifera)...
SourceID ieee
SourceType Publisher
StartPage 119
SubjectTerms Algae
enteromorpha prolifera detection
Image segmentation
Monitoring
object-oriented classification
random forest
Remote sensing
Satellites
Sea measurements
Synthetic aperture radar
synthetic aperture radar (SAR)
Title Object-Oriented Random Forest Classification for Enteromorpha Prolifera Detection with SAR Images
URI https://ieeexplore.ieee.org/document/7938182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ09qwPjOHjzakrb76B4NSsAEMSiEG9lnYpSWSLn4653dIkTjwVvTNN1mprvz7ew33yB0nVPFARc7QG65iYjRJBLcq-4bkRENED2lvsB5-Mj6E_Iwo7MGutnWwlhrA_nMxv4ynOWbUq99qqwD_xLEF1hw92DjVtdq7WQzO4PudDz1ZC0Wpz-bpYRY0TtAw-9RaorIW7yuVKw_fwkw_vczDlF7V5WHn7bx5gg1bNFCcqR8JiUaeb1iQI94LAtTLrBvubmqcOh56dlAwQEYECoONIByUYKBpX_fuye3SHxnq8DKKrBPzeLn2zEeLGCxWbXRpHf_0u1Hm7YJ0StggSoCBJrr1CaaCia4SJ3mSiaKW546mH6KKJ5p4iwxkqRSZwBBsswwLTnsKCmx2TFqFmVhTxDOhU2USpyjhBPtWG4VNZo5eFpQysQpannzzJe1MsZ8Y5mzv2-fo33vnZqhdYGa1cfaXkJIr9RV8OUXNJOlEg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOhJDRi_3YNHC2m72-0eDUpA-TAIhBvZz8QorZFy8dc7u0WIxoO3pmnaZqbd9zp98wah65RKBrzYAnNLdUC0IgFnznVf85gooOgRdQ3O_UHSmZCHGZ1V0M2mF8YY48VnpuE2_b98nauVK5U14VkCfIEFdwdwn4Zlt9bWOLPZbU1HUyfXShrRz3EpHi3a-6j_fZ1SJPLaWBWyoT5_WTD-90YOUH3bl4efNohziComqyExlK6WEgydYzHwRzwSmc4X2A3dXBbYT710eiCfAgwcFXshQL7IIcTCne_NyVsEvjOF12Vl2BVn8fPtCHcXsNws62jSvh-3OsF6cELwAmygCICDpioyoaI84YxHVjEpQskMiyy8gJJIFitiDdGCRELFQELiWCdKMPimpMTER6ia5Zk5RjjlJpQytJYSRpRNUiOpVomFozmlCT9BNRee-XvpjTFfR-b0791XaLcz7vfmve7g8QztuUyVeq1zVC0-VuYCAL6Qlz6vX_x_qFs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Virtual+Reality+and+Visualization+%28ICVRV%29&rft.atitle=Object-Oriented+Random+Forest+Classification+for+Enteromorpha+Prolifera+Detection+with+SAR+Images&rft.au=Cui+Xie&rft.au=Junyu+Dong&rft.au=Fangfang+Sun&rft.au=Lei+Bing&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=119&rft.epage=125&rft_id=info:doi/10.1109%2FICVRV.2016.27&rft.externalDocID=7938182