Combining variable selection with dimensionality reduction
This paper bridges the gap between variable selection methods (e.g., Pearson coefficients, KS test) and dimensionality reduction algorithms (e.g., PCA, LDA). Variable selection algorithms encounter difficulties dealing with highly correlated data, since many features are similar in quality. Dimensio...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 801 - 806 vol. 2 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.103 |
Cover
Loading…
Abstract | This paper bridges the gap between variable selection methods (e.g., Pearson coefficients, KS test) and dimensionality reduction algorithms (e.g., PCA, LDA). Variable selection algorithms encounter difficulties dealing with highly correlated data, since many features are similar in quality. Dimensionality reduction algorithms tend to combine all variables and cannot select a subset of significant variables. Our approach combines both methodologies by applying variable selection followed by dimensionality reduction. This combination makes sense only when using the same utility function in both stages, which we do. The resulting algorithm benefits from complex features as variable selection algorithms do, and at the same time enjoys the benefits of dimensionality reduction. |
---|---|
AbstractList | This paper bridges the gap between variable selection methods (e.g., Pearson coefficients, KS test) and dimensionality reduction algorithms (e.g., PCA, LDA). Variable selection algorithms encounter difficulties dealing with highly correlated data, since many features are similar in quality. Dimensionality reduction algorithms tend to combine all variables and cannot select a subset of significant variables. Our approach combines both methodologies by applying variable selection followed by dimensionality reduction. This combination makes sense only when using the same utility function in both stages, which we do. The resulting algorithm benefits from complex features as variable selection algorithms do, and at the same time enjoys the benefits of dimensionality reduction. |
Author | Bileschi, S. Wolf, L. |
Author_xml | – sequence: 1 givenname: L. surname: Wolf fullname: Wolf, L. organization: The Center for Biol. & Computational Learning, Massachusetts Inst. of Technol., MA, USA – sequence: 2 givenname: S. surname: Bileschi fullname: Bileschi, S. organization: The Center for Biol. & Computational Learning, Massachusetts Inst. of Technol., MA, USA |
BookMark | eNpNTs9LwzAYDTrBbe7oyUv_gXbflzRN402K08FAEfU6kvaLRtpU2qrsvzeoB9_l_YLHW7BZ6AMxdo6QIYJeV8_3DxkHkBmCOGJzhEKkhUZ9zBagCi25UJzP_hWnbDWObxAhtChzPmeXVd9ZH3x4ST7N4I1tKRmppXryfUi-_PSaNL6jMEZrWj8dkoGaj5_2jJ040460-uMle9pcP1a36e7uZltd7VKPSk5piUaDMbZ0wvF41ILJNSitbK5qSbWVzokIiZzrpqyLeDRm5JBcHpVYsovfXU9E-_fBd2Y47DEvlORSfANZSkrh |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.103 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 806 vol. 2 |
ExternalDocumentID | 1467525 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-81a90aab8f3f2103b0a490797b47c5ecb5ff333351229d8c6691b5fef1ef41b53 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-81a90aab8f3f2103b0a490797b47c5ecb5ff333351229d8c6691b5fef1ef41b53 |
ParticipantIDs | ieee_primary_1467525 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.6873194 |
Snippet | This paper bridges the gap between variable selection methods (e.g., Pearson coefficients, KS test) and dimensionality reduction algorithms (e.g., PCA, LDA).... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 801 |
SubjectTerms | Biology computing Bridges Data mining Diversity reception Input variables Linear discriminant analysis Principal component analysis Support vector machines Testing Time measurement |
Title | Combining variable selection with dimensionality reduction |
URI | https://ieeexplore.ieee.org/document/1467525 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxm8ROGrNWVBVSUYUo6lb5KSGkFrUpA7-eO-cBQgxkss9Lconj-86-7yPkJuHewjIfMyu4Y0JEmiHFCsM_o9ZGqkxi7fDsMZsuxMMyXbbIbVML45wLh8_cAJthL99uzB5TZUOc1WmStkkbgFtZq9XkU7DGNK9gHvY5IJtMNjsKCaqxhJ3PjLNMxrKE8DLFgaRi4qn78puMczh-mT-VqZcYhbV-SLCEFWjSJbP63suDJ2-DfaEH5vMXreN_H-6Q9L9r_ei8WcWOSMutj0m3Ck5pNfV3YKr1H2pbj9yBSQeBCfoBkBuLsOgu6OrAy6aY4aUWxQNK4g8I9-kWiWJxtE8Wk_vn8ZRVWgzsFQKMguWxkpFSOvfcA0rkOlICcLUcaTEyqTM69Z7DBfFDIm1uMvAx2JyPnRfQ4ieks96s3SmhNjKZVrG2SuSC51YZCZDYp0bl0jgxOiM99M7qvaTbWFWOOf_bfEEOAptqyIpckk6x3bsriBMKfR0-kC9fE7Q6 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbRI7acxagQq0VYVa1K3yKxJCalGbMvDruXMeRYiBTPZ5SZw4d9_Z932E3IQsNeDmA89wZj3OfeUhxYqHf0altJCxwNrh4SjuT_nTLJrVyG1VC2OtdYfPbBubbi_fLPUGU2UdXNVRGO2QXfD7UZBXa1UZFawyTQqgh30G2CYW1Z5CiHosbu8zZl4sApGDeBHhQFhw8ZR9saXj7PRexy958iVAaa0fIizOBz00yLC8-_zoyXt7k6m2_vpF7PjfxzsgrW21Hx1XfuyQ1OziiDSK8JQWi38NplIBorQ1yR2YlJOYoJ8AurEMi66dsg68boo5XmpQPiCn_oCAn66QKhZHW2T6cD_p9b1CjcF7gxAj85JACl9KlaQsBZzIlC85IGvRVbyrI6tVlKYMLoggQmESHcMcg82mgU05tNgxqS-WC3tCqPF1rGSgjOQJZ4mRWgAoTiMtE6Et756SJs7O_CMn3JgXE3P2t_ma7PUnw8F88Dh6Pif7jlvV5UguSD1bbewlRA2ZunIfyzf9SbeD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Combining+variable+selection+with+dimensionality+reduction&rft.au=Wolf%2C+L.&rft.au=Bileschi%2C+S.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=801&rft.epage=806+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.103&rft.externalDocID=1467525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |