Combining variable selection with dimensionality reduction

This paper bridges the gap between variable selection methods (e.g., Pearson coefficients, KS test) and dimensionality reduction algorithms (e.g., PCA, LDA). Variable selection algorithms encounter difficulties dealing with highly correlated data, since many features are similar in quality. Dimensio...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 801 - 806 vol. 2
Main Authors Wolf, L., Bileschi, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0769523722
9780769523729
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2005.103

Cover

Loading…
Abstract This paper bridges the gap between variable selection methods (e.g., Pearson coefficients, KS test) and dimensionality reduction algorithms (e.g., PCA, LDA). Variable selection algorithms encounter difficulties dealing with highly correlated data, since many features are similar in quality. Dimensionality reduction algorithms tend to combine all variables and cannot select a subset of significant variables. Our approach combines both methodologies by applying variable selection followed by dimensionality reduction. This combination makes sense only when using the same utility function in both stages, which we do. The resulting algorithm benefits from complex features as variable selection algorithms do, and at the same time enjoys the benefits of dimensionality reduction.
AbstractList This paper bridges the gap between variable selection methods (e.g., Pearson coefficients, KS test) and dimensionality reduction algorithms (e.g., PCA, LDA). Variable selection algorithms encounter difficulties dealing with highly correlated data, since many features are similar in quality. Dimensionality reduction algorithms tend to combine all variables and cannot select a subset of significant variables. Our approach combines both methodologies by applying variable selection followed by dimensionality reduction. This combination makes sense only when using the same utility function in both stages, which we do. The resulting algorithm benefits from complex features as variable selection algorithms do, and at the same time enjoys the benefits of dimensionality reduction.
Author Bileschi, S.
Wolf, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Wolf
  fullname: Wolf, L.
  organization: The Center for Biol. & Computational Learning, Massachusetts Inst. of Technol., MA, USA
– sequence: 2
  givenname: S.
  surname: Bileschi
  fullname: Bileschi, S.
  organization: The Center for Biol. & Computational Learning, Massachusetts Inst. of Technol., MA, USA
BookMark eNpNTs9LwzAYDTrBbe7oyUv_gXbflzRN402K08FAEfU6kvaLRtpU2qrsvzeoB9_l_YLHW7BZ6AMxdo6QIYJeV8_3DxkHkBmCOGJzhEKkhUZ9zBagCi25UJzP_hWnbDWObxAhtChzPmeXVd9ZH3x4ST7N4I1tKRmppXryfUi-_PSaNL6jMEZrWj8dkoGaj5_2jJ040460-uMle9pcP1a36e7uZltd7VKPSk5piUaDMbZ0wvF41ILJNSitbK5qSbWVzokIiZzrpqyLeDRm5JBcHpVYsovfXU9E-_fBd2Y47DEvlORSfANZSkrh
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.103
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 806 vol. 2
ExternalDocumentID 1467525
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-81a90aab8f3f2103b0a490797b47c5ecb5ff333351229d8c6691b5fef1ef41b53
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-81a90aab8f3f2103b0a490797b47c5ecb5ff333351229d8c6691b5fef1ef41b53
ParticipantIDs ieee_primary_1467525
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.6873194
Snippet This paper bridges the gap between variable selection methods (e.g., Pearson coefficients, KS test) and dimensionality reduction algorithms (e.g., PCA, LDA)....
SourceID ieee
SourceType Publisher
StartPage 801
SubjectTerms Biology computing
Bridges
Data mining
Diversity reception
Input variables
Linear discriminant analysis
Principal component analysis
Support vector machines
Testing
Time measurement
Title Combining variable selection with dimensionality reduction
URI https://ieeexplore.ieee.org/document/1467525
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxm8ROGrNWVBVSUYUo6lb5KSGkFrUpA7-eO-cBQgxkss9Lconj-86-7yPkJuHewjIfMyu4Y0JEmiHFCsM_o9ZGqkxi7fDsMZsuxMMyXbbIbVML45wLh8_cAJthL99uzB5TZUOc1WmStkkbgFtZq9XkU7DGNK9gHvY5IJtMNjsKCaqxhJ3PjLNMxrKE8DLFgaRi4qn78puMczh-mT-VqZcYhbV-SLCEFWjSJbP63suDJ2-DfaEH5vMXreN_H-6Q9L9r_ei8WcWOSMutj0m3Ck5pNfV3YKr1H2pbj9yBSQeBCfoBkBuLsOgu6OrAy6aY4aUWxQNK4g8I9-kWiWJxtE8Wk_vn8ZRVWgzsFQKMguWxkpFSOvfcA0rkOlICcLUcaTEyqTM69Z7DBfFDIm1uMvAx2JyPnRfQ4ieks96s3SmhNjKZVrG2SuSC51YZCZDYp0bl0jgxOiM99M7qvaTbWFWOOf_bfEEOAptqyIpckk6x3bsriBMKfR0-kC9fE7Q6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbRI7acxagQq0VYVa1K3yKxJCalGbMvDruXMeRYiBTPZ5SZw4d9_Z932E3IQsNeDmA89wZj3OfeUhxYqHf0altJCxwNrh4SjuT_nTLJrVyG1VC2OtdYfPbBubbi_fLPUGU2UdXNVRGO2QXfD7UZBXa1UZFawyTQqgh30G2CYW1Z5CiHosbu8zZl4sApGDeBHhQFhw8ZR9saXj7PRexy958iVAaa0fIizOBz00yLC8-_zoyXt7k6m2_vpF7PjfxzsgrW21Hx1XfuyQ1OziiDSK8JQWi38NplIBorQ1yR2YlJOYoJ8AurEMi66dsg68boo5XmpQPiCn_oCAn66QKhZHW2T6cD_p9b1CjcF7gxAj85JACl9KlaQsBZzIlC85IGvRVbyrI6tVlKYMLoggQmESHcMcg82mgU05tNgxqS-WC3tCqPF1rGSgjOQJZ4mRWgAoTiMtE6Et756SJs7O_CMn3JgXE3P2t_ma7PUnw8F88Dh6Pif7jlvV5UguSD1bbewlRA2ZunIfyzf9SbeD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Combining+variable+selection+with+dimensionality+reduction&rft.au=Wolf%2C+L.&rft.au=Bileschi%2C+S.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=801&rft.epage=806+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.103&rft.externalDocID=1467525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon