Mining Maximal Patterns Based on Improved FP-tree and Array Technique

Mining frequent patterns is important for mining association rules. However, because of the inherent complexity, mining complete frequent patterns from a dense database could be impractical, and the quantity of the mined patterns is usually very large, it is hard to understand and make use of them....

Full description

Saved in:
Bibliographic Details
Published in2010 Third International Symposium on Intelligent Information Technology and Security Informatics pp. 567 - 571
Main Authors Hua-jin Wang, Chun-an Hu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2010
Subjects
Online AccessGet full text
ISBN9781424467303
1424467306
DOI10.1109/IITSI.2010.185

Cover

Abstract Mining frequent patterns is important for mining association rules. However, because of the inherent complexity, mining complete frequent patterns from a dense database could be impractical, and the quantity of the mined patterns is usually very large, it is hard to understand and make use of them. Maximal frequent patterns contain and compress all frequent patterns, and the memory needed for saving them is much smaller than that needed for saving complete patterns, thus it is greatly valuable to mine maximal frequent patterns. In this paper, the structure of a traditional FP-tree is improved , an efficient algorithm for mining maximal frequent patterns based on improved FP-tree and array technique, called IAFP-max, is presented. By introducing the concept of postfix sub-tree, the presented algorithm needn't generate the candidate of maximal frequent patterns in mining process and therefore greatly reduces the memory consume, and it also uses an array-based technique to reduce the traverse time to the improved FP-tree. The experimental evaluation shows that this algorithm outperforms most exiting algorithms MAFIA, GenMax and FPmax*.
AbstractList Mining frequent patterns is important for mining association rules. However, because of the inherent complexity, mining complete frequent patterns from a dense database could be impractical, and the quantity of the mined patterns is usually very large, it is hard to understand and make use of them. Maximal frequent patterns contain and compress all frequent patterns, and the memory needed for saving them is much smaller than that needed for saving complete patterns, thus it is greatly valuable to mine maximal frequent patterns. In this paper, the structure of a traditional FP-tree is improved , an efficient algorithm for mining maximal frequent patterns based on improved FP-tree and array technique, called IAFP-max, is presented. By introducing the concept of postfix sub-tree, the presented algorithm needn't generate the candidate of maximal frequent patterns in mining process and therefore greatly reduces the memory consume, and it also uses an array-based technique to reduce the traverse time to the improved FP-tree. The experimental evaluation shows that this algorithm outperforms most exiting algorithms MAFIA, GenMax and FPmax*.
Author Chun-an Hu
Hua-jin Wang
Author_xml – sequence: 1
  surname: Hua-jin Wang
  fullname: Hua-jin Wang
  email: wanghj128@163.com
  organization: Sch. of Inf. Eng., Jiangxi Univ. of Sci. & Technol., Ganzhou, China
– sequence: 2
  surname: Chun-an Hu
  fullname: Chun-an Hu
  organization: Sch. of Inf. Eng., Jiangxi Univ. of Sci. & Technol., Ganzhou, China
BookMark eNpNjrFOwzAURY0ACShZWVj8Ayl2_BzbY6laiNSKSoS5cpxnMGrd4gTU_j1BMHCXc89yda_IWdxFJOSGszHnzNxVVf1cjQv241qekMwozaEAKBUIcfrfBRMXJOu6dzYEJNdKXJLZMsQQX-nSHsLWbujK9j2m2NF722FLd5FW233afQ19vsr7hEhtbOkkJXukNbq3GD4-8Zqce7vpMPvjiLzMZ_X0MV88PVTTySIPXMk-V2gkltAadKJRvnAG0RkDXgH4RjrNvVFKeNEyz5XxRlujoSlL75Q2DMSI3P7uBkRc79NwOR3XEqQotRbfCW5NcQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IITSI.2010.185
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424467433
1424467438
EndPage 571
ExternalDocumentID 5453688
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-7e95e64d9ec3b7f2c9eec994f744fb5c81f9773f3d0f179f98a984b66fc789043
IEDL.DBID RIE
ISBN 9781424467303
1424467306
IngestDate Wed Aug 27 02:27:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-7e95e64d9ec3b7f2c9eec994f744fb5c81f9773f3d0f179f98a984b66fc789043
PageCount 5
ParticipantIDs ieee_primary_5453688
PublicationCentury 2000
PublicationDate 2010-April
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-April
PublicationDecade 2010
PublicationTitle 2010 Third International Symposium on Intelligent Information Technology and Security Informatics
PublicationTitleAbbrev IITSI
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000451873
Score 1.4615452
Snippet Mining frequent patterns is important for mining association rules. However, because of the inherent complexity, mining complete frequent patterns from a dense...
SourceID ieee
SourceType Publisher
StartPage 567
SubjectTerms Array technique
Association rules
Data mining
Data security
Frequency
Improved FP-tree
Informatics
Information security
Information technology
Itemsets
Maximal frequent pattern
Testing
Transaction databases
Title Mining Maximal Patterns Based on Improved FP-tree and Array Technique
URI https://ieeexplore.ieee.org/document/5453688
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDCSNokdf4yAWrVIQZVopW5VYp-lCkhRSSXg12M7SUGIgc3xdInPefbdvXcIXeVCJ5GWceAThzTmyv4HNQ_iGKyLGMozL8eQPrDxnN4vkkULXe-4MADgi8-g74Y-l6_XautCZQOL9oQJ0UZt62YVV2sXT3E6KYKThrvFrOeyRtKpfia1aGMUysFkMnucVJVdkeuj_KO1ikeW0T5KG5uqgpKn_rbM--rzl1zjf40-QL1vDh-e7tDpELWg6KJh6vtB4DR7X71kz3jq1TWLN3xrwUzjdYGrIIMdj6aBS1jjrND4ZrPJPvCskXvtofloOLsbB3UjhWBlTwdlwEEmwKiWoEjOTawkgJKSGk6pyRMlImOPgcQQHRq7QY0UmRQ0Z44HJGRIyRHqFOsCjhEOjb0PitDYWzVQpuKcaBAsIzoBqhXVJ6jrPsHytdLKWNZvf_r39Bnaq7LxrhLmHHXKzRYuLMiX-aVf3S9SkaIF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cBI2iR2HHsE1KqFpqpEKnWrEvssVUCKSioBvx7HSQpCDGwXT058zrPv7r1D6CrlKvCU8B2bOKR-KM1_UIWO74NxEU3DxMoxRGM2mNL7WTBroOsNFwYAbPEZdArT5vLVUq6LUFnXoD1hnG-hbWPRoGRrbSIqhVIKD0nN3mLGd1kt6lQ9k0q20XNFdziMH4dlbZdXdFL-0VzFYkt_D0X1rMqSkqfOOk878vOXYON_p72P2t8sPjzZ4NMBakDWQr3IdoTAUfK-eEme8cTqa2Zv-NbAmcLLDJdhBmP3J06RssZJpvDNapV84LgWfG2jab8X3w2cqpWCszDng9wJQQTAqBIgSRpqXwoAKQTVIaU6DST3tDkIEk2Uq80W1YIngtOUFUwgLlxKDlEzW2ZwhLCrzY2Qu9rcq4Ey6adEAWcJUQFQJak6Rq3iE8xfS7WMefX2J38PX6KdQRyN5qPh-OEU7Za5-aIu5gw189Uazg3k5-mFXekvBKGlUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Third+International+Symposium+on+Intelligent+Information+Technology+and+Security+Informatics&rft.atitle=Mining+Maximal+Patterns+Based+on+Improved+FP-tree+and+Array+Technique&rft.au=Hua-jin+Wang&rft.au=Chun-an+Hu&rft.date=2010-04-01&rft.pub=IEEE&rft.isbn=9781424467303&rft.spage=567&rft.epage=571&rft_id=info:doi/10.1109%2FIITSI.2010.185&rft.externalDocID=5453688
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/sc.gif&client=summon&freeimage=true