Mining Maximal Patterns Based on Improved FP-tree and Array Technique
Mining frequent patterns is important for mining association rules. However, because of the inherent complexity, mining complete frequent patterns from a dense database could be impractical, and the quantity of the mined patterns is usually very large, it is hard to understand and make use of them....
Saved in:
Published in | 2010 Third International Symposium on Intelligent Information Technology and Security Informatics pp. 567 - 571 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424467303 1424467306 |
DOI | 10.1109/IITSI.2010.185 |
Cover
Abstract | Mining frequent patterns is important for mining association rules. However, because of the inherent complexity, mining complete frequent patterns from a dense database could be impractical, and the quantity of the mined patterns is usually very large, it is hard to understand and make use of them. Maximal frequent patterns contain and compress all frequent patterns, and the memory needed for saving them is much smaller than that needed for saving complete patterns, thus it is greatly valuable to mine maximal frequent patterns. In this paper, the structure of a traditional FP-tree is improved , an efficient algorithm for mining maximal frequent patterns based on improved FP-tree and array technique, called IAFP-max, is presented. By introducing the concept of postfix sub-tree, the presented algorithm needn't generate the candidate of maximal frequent patterns in mining process and therefore greatly reduces the memory consume, and it also uses an array-based technique to reduce the traverse time to the improved FP-tree. The experimental evaluation shows that this algorithm outperforms most exiting algorithms MAFIA, GenMax and FPmax*. |
---|---|
AbstractList | Mining frequent patterns is important for mining association rules. However, because of the inherent complexity, mining complete frequent patterns from a dense database could be impractical, and the quantity of the mined patterns is usually very large, it is hard to understand and make use of them. Maximal frequent patterns contain and compress all frequent patterns, and the memory needed for saving them is much smaller than that needed for saving complete patterns, thus it is greatly valuable to mine maximal frequent patterns. In this paper, the structure of a traditional FP-tree is improved , an efficient algorithm for mining maximal frequent patterns based on improved FP-tree and array technique, called IAFP-max, is presented. By introducing the concept of postfix sub-tree, the presented algorithm needn't generate the candidate of maximal frequent patterns in mining process and therefore greatly reduces the memory consume, and it also uses an array-based technique to reduce the traverse time to the improved FP-tree. The experimental evaluation shows that this algorithm outperforms most exiting algorithms MAFIA, GenMax and FPmax*. |
Author | Chun-an Hu Hua-jin Wang |
Author_xml | – sequence: 1 surname: Hua-jin Wang fullname: Hua-jin Wang email: wanghj128@163.com organization: Sch. of Inf. Eng., Jiangxi Univ. of Sci. & Technol., Ganzhou, China – sequence: 2 surname: Chun-an Hu fullname: Chun-an Hu organization: Sch. of Inf. Eng., Jiangxi Univ. of Sci. & Technol., Ganzhou, China |
BookMark | eNpNjrFOwzAURY0ACShZWVj8Ayl2_BzbY6laiNSKSoS5cpxnMGrd4gTU_j1BMHCXc89yda_IWdxFJOSGszHnzNxVVf1cjQv241qekMwozaEAKBUIcfrfBRMXJOu6dzYEJNdKXJLZMsQQX-nSHsLWbujK9j2m2NF722FLd5FW233afQ19vsr7hEhtbOkkJXukNbq3GD4-8Zqce7vpMPvjiLzMZ_X0MV88PVTTySIPXMk-V2gkltAadKJRvnAG0RkDXgH4RjrNvVFKeNEyz5XxRlujoSlL75Q2DMSI3P7uBkRc79NwOR3XEqQotRbfCW5NcQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IITSI.2010.185 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781424467433 1424467438 |
EndPage | 571 |
ExternalDocumentID | 5453688 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-7e95e64d9ec3b7f2c9eec994f744fb5c81f9773f3d0f179f98a984b66fc789043 |
IEDL.DBID | RIE |
ISBN | 9781424467303 1424467306 |
IngestDate | Wed Aug 27 02:27:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-7e95e64d9ec3b7f2c9eec994f744fb5c81f9773f3d0f179f98a984b66fc789043 |
PageCount | 5 |
ParticipantIDs | ieee_primary_5453688 |
PublicationCentury | 2000 |
PublicationDate | 2010-April |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-April |
PublicationDecade | 2010 |
PublicationTitle | 2010 Third International Symposium on Intelligent Information Technology and Security Informatics |
PublicationTitleAbbrev | IITSI |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000451873 |
Score | 1.4615452 |
Snippet | Mining frequent patterns is important for mining association rules. However, because of the inherent complexity, mining complete frequent patterns from a dense... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 567 |
SubjectTerms | Array technique Association rules Data mining Data security Frequency Improved FP-tree Informatics Information security Information technology Itemsets Maximal frequent pattern Testing Transaction databases |
Title | Mining Maximal Patterns Based on Improved FP-tree and Array Technique |
URI | https://ieeexplore.ieee.org/document/5453688 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDCSNokdf4yAWrVIQZVopW5VYp-lCkhRSSXg12M7SUGIgc3xdInPefbdvXcIXeVCJ5GWceAThzTmyv4HNQ_iGKyLGMozL8eQPrDxnN4vkkULXe-4MADgi8-g74Y-l6_XautCZQOL9oQJ0UZt62YVV2sXT3E6KYKThrvFrOeyRtKpfia1aGMUysFkMnucVJVdkeuj_KO1ikeW0T5KG5uqgpKn_rbM--rzl1zjf40-QL1vDh-e7tDpELWg6KJh6vtB4DR7X71kz3jq1TWLN3xrwUzjdYGrIIMdj6aBS1jjrND4ZrPJPvCskXvtofloOLsbB3UjhWBlTwdlwEEmwKiWoEjOTawkgJKSGk6pyRMlImOPgcQQHRq7QY0UmRQ0Z44HJGRIyRHqFOsCjhEOjb0PitDYWzVQpuKcaBAsIzoBqhXVJ6jrPsHytdLKWNZvf_r39Bnaq7LxrhLmHHXKzRYuLMiX-aVf3S9SkaIF |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cBI2iR2HHsE1KqFpqpEKnWrEvssVUCKSioBvx7HSQpCDGwXT058zrPv7r1D6CrlKvCU8B2bOKR-KM1_UIWO74NxEU3DxMoxRGM2mNL7WTBroOsNFwYAbPEZdArT5vLVUq6LUFnXoD1hnG-hbWPRoGRrbSIqhVIKD0nN3mLGd1kt6lQ9k0q20XNFdziMH4dlbZdXdFL-0VzFYkt_D0X1rMqSkqfOOk878vOXYON_p72P2t8sPjzZ4NMBakDWQr3IdoTAUfK-eEme8cTqa2Zv-NbAmcLLDJdhBmP3J06RssZJpvDNapV84LgWfG2jab8X3w2cqpWCszDng9wJQQTAqBIgSRpqXwoAKQTVIaU6DST3tDkIEk2Uq80W1YIngtOUFUwgLlxKDlEzW2ZwhLCrzY2Qu9rcq4Ey6adEAWcJUQFQJak6Rq3iE8xfS7WMefX2J38PX6KdQRyN5qPh-OEU7Za5-aIu5gw189Uazg3k5-mFXekvBKGlUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Third+International+Symposium+on+Intelligent+Information+Technology+and+Security+Informatics&rft.atitle=Mining+Maximal+Patterns+Based+on+Improved+FP-tree+and+Array+Technique&rft.au=Hua-jin+Wang&rft.au=Chun-an+Hu&rft.date=2010-04-01&rft.pub=IEEE&rft.isbn=9781424467303&rft.spage=567&rft.epage=571&rft_id=info:doi/10.1109%2FIITSI.2010.185&rft.externalDocID=5453688 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424467303/sc.gif&client=summon&freeimage=true |