Efficient Multiple Instance Metric Learning Using Weakly Supervised Data

We consider learning a distance metric in a weakly supervised setting where bags (or sets) of instances are labeled with bags of labels. A general approach is to formulate the problem as a Multiple Instance Learning (MIL) problem where the metric is learned so that the distances between instances in...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 5948 - 5956
Main Authors Law, Marc T., Yaoliang Yu, Urtasun, Raquel, Zemel, Richard S., Xing, Eric P.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider learning a distance metric in a weakly supervised setting where bags (or sets) of instances are labeled with bags of labels. A general approach is to formulate the problem as a Multiple Instance Learning (MIL) problem where the metric is learned so that the distances between instances inferred to be similar are smaller than the distances between instances inferred to be dissimilar. Classic approaches alternate the optimization over the learned metric and the assignment of similar instances. In this paper, we propose an efficient method that jointly learns the metric and the assignment of instances. In particular, our model is learned by solving an extension of k-means for MIL problems where instances are assigned to categories depending on annotations provided at bag-level. Our learning algorithm is much faster than existing metric learning methods for MIL problems and obtains state-of-the-art recognition performance in automated image annotation and instance classification for face identification.
AbstractList We consider learning a distance metric in a weakly supervised setting where bags (or sets) of instances are labeled with bags of labels. A general approach is to formulate the problem as a Multiple Instance Learning (MIL) problem where the metric is learned so that the distances between instances inferred to be similar are smaller than the distances between instances inferred to be dissimilar. Classic approaches alternate the optimization over the learned metric and the assignment of similar instances. In this paper, we propose an efficient method that jointly learns the metric and the assignment of instances. In particular, our model is learned by solving an extension of k-means for MIL problems where instances are assigned to categories depending on annotations provided at bag-level. Our learning algorithm is much faster than existing metric learning methods for MIL problems and obtains state-of-the-art recognition performance in automated image annotation and instance classification for face identification.
Author Yaoliang Yu
Zemel, Richard S.
Law, Marc T.
Urtasun, Raquel
Xing, Eric P.
Author_xml – sequence: 1
  givenname: Marc T.
  surname: Law
  fullname: Law, Marc T.
– sequence: 2
  surname: Yaoliang Yu
  fullname: Yaoliang Yu
– sequence: 3
  givenname: Raquel
  surname: Urtasun
  fullname: Urtasun, Raquel
– sequence: 4
  givenname: Richard S.
  surname: Zemel
  fullname: Zemel, Richard S.
– sequence: 5
  givenname: Eric P.
  surname: Xing
  fullname: Xing, Eric P.
BookMark eNotzEFLwzAYgOEIE1ynR09e8gdavy9p0uYodW6DDkWdHkfSfJVojaXthP17Eb28z-1N2Cx-RWLsEiFDBHNdvTw8ZgKwyLSEE5agkqWGXBX5jM0RtEy1QXPGknF8BxCyEDBn62XbhiZQnPj20E2h74hv4jjZ2BDf0jSEhtdkhxjiG9-Nv30l-9Ed-dOhp-E7jOT5rZ3sOTttbTfSxb8LtrtbPlfrtL5fbaqbOg1YqCktfO6kIW1ao3Su0Hpqtch9kwtnnQdTWm8ISu1t6ZUTHp33Dk0LXrhGablgV3_fQET7fgifdjjuSwRAlPIHEmZNmA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2017.630
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Explore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1538604574
9781538604571
EndPage 5956
ExternalDocumentID 8100113
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
G8K
IPLJI
JC5
M43
RIE
RIG
RIO
RNS
ID FETCH-LOGICAL-i175t-7d4b39e69f956451adef624dc42babd098ad9e086da8d5b2d1bddb19f0d2bc563
IEDL.DBID RIE
ISSN 1063-6919
IngestDate Wed Jun 26 19:27:39 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-7d4b39e69f956451adef624dc42babd098ad9e086da8d5b2d1bddb19f0d2bc563
PageCount 9
ParticipantIDs ieee_primary_8100113
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
Score 2.1581745
Snippet We consider learning a distance metric in a weakly supervised setting where bags (or sets) of instances are labeled with bags of labels. A general approach is...
SourceID ieee
SourceType Publisher
StartPage 5948
SubjectTerms Conferences
Face recognition
Measurement
Optimization
Symmetric matrices
Training
Title Efficient Multiple Instance Metric Learning Using Weakly Supervised Data
URI https://ieeexplore.ieee.org/document/8100113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6QkydUMP5ODx7t2LqtrGeEoMkMUVFupN17MwYDRLaD_vW23YDEePC2vCzt0pftfV2_932EXCvO0aB-znxQCYtiBKaiBBia8m4AdI55bJuT0wcxmkT303jaIDfbXhhEdOQz9OylO8uHZVbaX2XdxAoGWYvavZ6UVa_WdnNl3VbcyaYImZCB3Olpdvsv40dL4up5wpGddy4qrogMWyTdTF9xR-ZeWWgv-_6lzPjf5zsgnV27Hh1vC9EhaeDiiLRqfEnrt3dtQhsLh02sTUYDJyFhhqVpTS2kdw4xmjFT67aV0VqC9Y06egF9RTX_-KJP5cp-ZtZmhltVqA6ZDAfP_RGrzRXYu0EMBetBpEOJQubSCsoECjAXPIIs4lpp8GWiQJqMCZNDiDWHQAPoQOY-cJ3FIjwmzcVygSeE-hAKn4OBBqGIfHOXxkDzOOO9LJZmi3RK2natZqtKP2NWL9PZ3-Fzsm9zVVFiL0iz-Czx0hT-Ql-5jP8AAjetSQ
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRwtZtZT0jZCgjREG5kXavMwYDRLaD_vW23YDEePC2vCxd05ftfV2_930I3QpKlUb9lDggQuIHCojwQyBKl3cNoFOVBqY5OR6yaOI_TINpBd1te2GUUpZ8pprm0p7lwzLJza-yVmgEg4xF7Z7G1SErurW22yvjt2LPNplHGHf5TlGz1XkZPRkaV7vJLN1556Niy0ivhuLNBAr2yLyZZ7KZfP_SZvzvDA9RY9ewh0fbUnSEKmpxjGolwsTl-7vWoY2JwyZWR1HXikjoYXFckgtx32JGPWZs_LYSXIqwvmFLMMCvSsw_vvBzvjIfmrV-wr3IRANNet1xJyKlvQJ515ghI23wpccV4yk3kjKuAJUy6kPiUykkODwUwHXOmM4iBJKCKwGky1MHqEwC5p2g6mK5UKcIO-Axh4IGBx7zHX2XVK6kQULbScD1JukM1c1azVaFgsasXKbzv8M3aD8ax4PZoD98vEAHJm8FQfYSVbPPXF1pGJDJa5v9H0BvsJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Efficient+Multiple+Instance+Metric+Learning+Using+Weakly+Supervised+Data&rft.au=Law%2C+Marc+T.&rft.au=Yaoliang+Yu&rft.au=Urtasun%2C+Raquel&rft.au=Zemel%2C+Richard+S.&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.spage=5948&rft.epage=5956&rft_id=info:doi/10.1109%2FCVPR.2017.630&rft.externalDocID=8100113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon