Efficient Multiple Instance Metric Learning Using Weakly Supervised Data
We consider learning a distance metric in a weakly supervised setting where bags (or sets) of instances are labeled with bags of labels. A general approach is to formulate the problem as a Multiple Instance Learning (MIL) problem where the metric is learned so that the distances between instances in...
Saved in:
Published in | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 5948 - 5956 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider learning a distance metric in a weakly supervised setting where bags (or sets) of instances are labeled with bags of labels. A general approach is to formulate the problem as a Multiple Instance Learning (MIL) problem where the metric is learned so that the distances between instances inferred to be similar are smaller than the distances between instances inferred to be dissimilar. Classic approaches alternate the optimization over the learned metric and the assignment of similar instances. In this paper, we propose an efficient method that jointly learns the metric and the assignment of instances. In particular, our model is learned by solving an extension of k-means for MIL problems where instances are assigned to categories depending on annotations provided at bag-level. Our learning algorithm is much faster than existing metric learning methods for MIL problems and obtains state-of-the-art recognition performance in automated image annotation and instance classification for face identification. |
---|---|
AbstractList | We consider learning a distance metric in a weakly supervised setting where bags (or sets) of instances are labeled with bags of labels. A general approach is to formulate the problem as a Multiple Instance Learning (MIL) problem where the metric is learned so that the distances between instances inferred to be similar are smaller than the distances between instances inferred to be dissimilar. Classic approaches alternate the optimization over the learned metric and the assignment of similar instances. In this paper, we propose an efficient method that jointly learns the metric and the assignment of instances. In particular, our model is learned by solving an extension of k-means for MIL problems where instances are assigned to categories depending on annotations provided at bag-level. Our learning algorithm is much faster than existing metric learning methods for MIL problems and obtains state-of-the-art recognition performance in automated image annotation and instance classification for face identification. |
Author | Yaoliang Yu Zemel, Richard S. Law, Marc T. Urtasun, Raquel Xing, Eric P. |
Author_xml | – sequence: 1 givenname: Marc T. surname: Law fullname: Law, Marc T. – sequence: 2 surname: Yaoliang Yu fullname: Yaoliang Yu – sequence: 3 givenname: Raquel surname: Urtasun fullname: Urtasun, Raquel – sequence: 4 givenname: Richard S. surname: Zemel fullname: Zemel, Richard S. – sequence: 5 givenname: Eric P. surname: Xing fullname: Xing, Eric P. |
BookMark | eNotzEFLwzAYgOEIE1ynR09e8gdavy9p0uYodW6DDkWdHkfSfJVojaXthP17Eb28z-1N2Cx-RWLsEiFDBHNdvTw8ZgKwyLSEE5agkqWGXBX5jM0RtEy1QXPGknF8BxCyEDBn62XbhiZQnPj20E2h74hv4jjZ2BDf0jSEhtdkhxjiG9-Nv30l-9Ed-dOhp-E7jOT5rZ3sOTttbTfSxb8LtrtbPlfrtL5fbaqbOg1YqCktfO6kIW1ao3Su0Hpqtch9kwtnnQdTWm8ISu1t6ZUTHp33Dk0LXrhGablgV3_fQET7fgifdjjuSwRAlPIHEmZNmA |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2017.630 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Explore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 1538604574 9781538604571 |
EndPage | 5956 |
ExternalDocumentID | 8100113 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK G8K IPLJI JC5 M43 RIE RIG RIO RNS |
ID | FETCH-LOGICAL-i175t-7d4b39e69f956451adef624dc42babd098ad9e086da8d5b2d1bddb19f0d2bc563 |
IEDL.DBID | RIE |
ISSN | 1063-6919 |
IngestDate | Wed Jun 26 19:27:39 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-7d4b39e69f956451adef624dc42babd098ad9e086da8d5b2d1bddb19f0d2bc563 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8100113 |
PublicationCentury | 2000 |
PublicationDate | 2017-July |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 |
Score | 2.1581745 |
Snippet | We consider learning a distance metric in a weakly supervised setting where bags (or sets) of instances are labeled with bags of labels. A general approach is... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 5948 |
SubjectTerms | Conferences Face recognition Measurement Optimization Symmetric matrices Training |
Title | Efficient Multiple Instance Metric Learning Using Weakly Supervised Data |
URI | https://ieeexplore.ieee.org/document/8100113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6QkydUMP5ODx7t2LqtrGeEoMkMUVFupN17MwYDRLaD_vW23YDEePC2vCzt0pftfV2_932EXCvO0aB-znxQCYtiBKaiBBia8m4AdI55bJuT0wcxmkT303jaIDfbXhhEdOQz9OylO8uHZVbaX2XdxAoGWYvavZ6UVa_WdnNl3VbcyaYImZCB3Olpdvsv40dL4up5wpGddy4qrogMWyTdTF9xR-ZeWWgv-_6lzPjf5zsgnV27Hh1vC9EhaeDiiLRqfEnrt3dtQhsLh02sTUYDJyFhhqVpTS2kdw4xmjFT67aV0VqC9Y06egF9RTX_-KJP5cp-ZtZmhltVqA6ZDAfP_RGrzRXYu0EMBetBpEOJQubSCsoECjAXPIIs4lpp8GWiQJqMCZNDiDWHQAPoQOY-cJ3FIjwmzcVygSeE-hAKn4OBBqGIfHOXxkDzOOO9LJZmi3RK2natZqtKP2NWL9PZ3-Fzsm9zVVFiL0iz-Czx0hT-Ql-5jP8AAjetSQ |
link.rule.ids | 310,311,783,787,792,793,799,23942,23943,25152,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRwtZtZT0jZCgjREG5kXavMwYDRLaD_vW23YDEePC2vCxd05ftfV2_930I3QpKlUb9lDggQuIHCojwQyBKl3cNoFOVBqY5OR6yaOI_TINpBd1te2GUUpZ8pprm0p7lwzLJza-yVmgEg4xF7Z7G1SErurW22yvjt2LPNplHGHf5TlGz1XkZPRkaV7vJLN1556Niy0ivhuLNBAr2yLyZZ7KZfP_SZvzvDA9RY9ewh0fbUnSEKmpxjGolwsTl-7vWoY2JwyZWR1HXikjoYXFckgtx32JGPWZs_LYSXIqwvmFLMMCvSsw_vvBzvjIfmrV-wr3IRANNet1xJyKlvQJ515ghI23wpccV4yk3kjKuAJUy6kPiUykkODwUwHXOmM4iBJKCKwGky1MHqEwC5p2g6mK5UKcIO-Axh4IGBx7zHX2XVK6kQULbScD1JukM1c1azVaFgsasXKbzv8M3aD8ax4PZoD98vEAHJm8FQfYSVbPPXF1pGJDJa5v9H0BvsJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Efficient+Multiple+Instance+Metric+Learning+Using+Weakly+Supervised+Data&rft.au=Law%2C+Marc+T.&rft.au=Yaoliang+Yu&rft.au=Urtasun%2C+Raquel&rft.au=Zemel%2C+Richard+S.&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.spage=5948&rft.epage=5956&rft_id=info:doi/10.1109%2FCVPR.2017.630&rft.externalDocID=8100113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |