Tangent Convolutions for Dense Prediction in 3D

We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions - a new construction for convolutional networks on 3D data. In contrast to volumetric approaches, our method operates directly on surface geometry. Crucially, the constr...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 3887 - 3896
Main Authors Tatarchenko, Maxim, Park, Jaesik, Koltun, Vladlen, Zhou, Qian-Yi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions - a new construction for convolutional networks on 3D data. In contrast to volumetric approaches, our method operates directly on surface geometry. Crucially, the construction is applicable to unstructured point clouds and other noisy real-world data. We show that tangent convolutions can be evaluated efficiently on large-scale point clouds with millions of points. Using tangent convolutions, we design a deep fully-convolutional network for semantic segmentation of 3D point clouds, and apply it to challenging real-world datasets of indoor and outdoor 3D environments. Experimental results show that the presented approach outperforms other recent deep network constructions in detailed analysis of large 3D scenes.
AbstractList We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions - a new construction for convolutional networks on 3D data. In contrast to volumetric approaches, our method operates directly on surface geometry. Crucially, the construction is applicable to unstructured point clouds and other noisy real-world data. We show that tangent convolutions can be evaluated efficiently on large-scale point clouds with millions of points. Using tangent convolutions, we design a deep fully-convolutional network for semantic segmentation of 3D point clouds, and apply it to challenging real-world datasets of indoor and outdoor 3D environments. Experimental results show that the presented approach outperforms other recent deep network constructions in detailed analysis of large 3D scenes.
Author Tatarchenko, Maxim
Koltun, Vladlen
Zhou, Qian-Yi
Park, Jaesik
Author_xml – sequence: 1
  givenname: Maxim
  surname: Tatarchenko
  fullname: Tatarchenko, Maxim
– sequence: 2
  givenname: Jaesik
  surname: Park
  fullname: Park, Jaesik
– sequence: 3
  givenname: Vladlen
  surname: Koltun
  fullname: Koltun, Vladlen
– sequence: 4
  givenname: Qian-Yi
  surname: Zhou
  fullname: Zhou, Qian-Yi
BookMark eNotzM1KxDAUQOEoCo5j1y7c5AXauWmSm2QpHf9gwEFGt0Pa3EhkTKStgm8voqsD3-Kcs5NcMjF2KaARAtyqe9k-NS0I2wAocEescsYKLS2iasEds4UAlDU64c5YNU1vANCilVbpBVvtfH6lPPOu5K9y-JxTyROPZeRryhPx7UghDb_KU-ZyfcFOoz9MVP13yZ5vb3bdfb15vHvorjd1EkbPtRkE9b3pgzYxkFe6JaljHzFSr2CIqLQJZBRFjxEpgGvDgMGS91qhDHLJrv6-iYj2H2N69-P33mpjNRj5A40QRp4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00409
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 3896
ExternalDocumentID 8578507
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-7c1ebb7bd57fdea452e35fbf6feb40cf6457de74efa6f6ed092dc6d8eaa5463d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-7c1ebb7bd57fdea452e35fbf6feb40cf6457de74efa6f6ed092dc6d8eaa5463d3
PageCount 10
ParticipantIDs ieee_primary_8578507
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5958374
Snippet We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions - a new construction for...
SourceID ieee
SourceType Publisher
StartPage 3887
SubjectTerms Convolution
Geometry
Kernel
Semantics
Shape
Three-dimensional displays
Two dimensional displays
Title Tangent Convolutions for Dense Prediction in 3D
URI https://ieeexplore.ieee.org/document/8578507
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJ09TN_GbHDzabW3SJD1vjiFMhmyy28jHGxhCJ9p68Nebt-2miAdvbaAhIQ3v1_M8LyG3PglGwsc6CubbRJxxHhkQEHkTW6e8VsxgvmP2KKZL_rBKVy1yt-fCAEAFPoM-Pla1fLe1JabKBgqVWZA6fhACt5qrtc-nJEIx1VTI8J2FyEZkqlHziYfZYPQ8f0IsF4InOQIQf7RTqazJpENmu3XUIJKXflmYvv38JdH434Uekd43b4_O9xbpmLQgPyGdxtGkzTV-75LBQleUKhq--9j9ezS4r3QcolqcA8s3OEo3OWXjHllO7hejadR0Tog2wR0oImljMEYal0rvQPM0AZZ644UHw4fWC55KB5KD18ILcMMscVY4BVqjPL5jp6Sdb3M4I5SB8tZyLhNvuVWJkdhEIWbaxcy6LDsnXdz_-rUWx1g3W7_4e_iSHOIJ1FirK9Iu3kq4Dla9MDfVcX4BWTaiGA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB0VOMCJrYgdH-CYtrEdxzlwoqBCFyHUIm4ltsdShZQi2oLgW_gV_g07TQtCXJG4JZZiJTNJ3ixvZgCOLXUgYcM0cPCtAs44DxQKDKwKtZE2lUz5eEe7Ixo9fnUX3ZXgfV4Lg4g5-Qwr_jDP5ZuhnvhQWVX6ziy1uKBQNvH1xTloo9PLutPmCaUX592zRlDMEAgGDhjHQaxDVCpWJoqtwZRHFFlklRUWFa9pK3gUG4w52lRYgaaWUKOFkZimvlG8YW7fBVhydkZEp9Vh8wgOFZLJIifnz5nzpUQii_5BYS2pnt1e33j2mKdrck95_DbAJcevi1X4mD35lLbyUJmMVUW__WgK-V9Fswblr8pEcj3H3HUoYbYBq4UpTYof1WgTqt00Lxoj7rrn2ddFnIFO6s5v93v4BJVfJYOMsHoZen9y81uwmA0z3AbCUFqtOY-p1VxLqmI_JiJkqQmZNkmyA5te3v3HafuPfiHq3d-Xj2C50W23-q3LTnMPVrz2p8yyfVgcP03wwNkwY3WYv0oE7v9aQZ_HSAU3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Tangent+Convolutions+for+Dense+Prediction+in+3D&rft.au=Tatarchenko%2C+Maxim&rft.au=Park%2C+Jaesik&rft.au=Koltun%2C+Vladlen&rft.au=Zhou%2C+Qian-Yi&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3887&rft.epage=3896&rft_id=info:doi/10.1109%2FCVPR.2018.00409&rft.externalDocID=8578507