Tangent Convolutions for Dense Prediction in 3D
We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions - a new construction for convolutional networks on 3D data. In contrast to volumetric approaches, our method operates directly on surface geometry. Crucially, the constr...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 3887 - 3896 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions - a new construction for convolutional networks on 3D data. In contrast to volumetric approaches, our method operates directly on surface geometry. Crucially, the construction is applicable to unstructured point clouds and other noisy real-world data. We show that tangent convolutions can be evaluated efficiently on large-scale point clouds with millions of points. Using tangent convolutions, we design a deep fully-convolutional network for semantic segmentation of 3D point clouds, and apply it to challenging real-world datasets of indoor and outdoor 3D environments. Experimental results show that the presented approach outperforms other recent deep network constructions in detailed analysis of large 3D scenes. |
---|---|
AbstractList | We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions - a new construction for convolutional networks on 3D data. In contrast to volumetric approaches, our method operates directly on surface geometry. Crucially, the construction is applicable to unstructured point clouds and other noisy real-world data. We show that tangent convolutions can be evaluated efficiently on large-scale point clouds with millions of points. Using tangent convolutions, we design a deep fully-convolutional network for semantic segmentation of 3D point clouds, and apply it to challenging real-world datasets of indoor and outdoor 3D environments. Experimental results show that the presented approach outperforms other recent deep network constructions in detailed analysis of large 3D scenes. |
Author | Tatarchenko, Maxim Koltun, Vladlen Zhou, Qian-Yi Park, Jaesik |
Author_xml | – sequence: 1 givenname: Maxim surname: Tatarchenko fullname: Tatarchenko, Maxim – sequence: 2 givenname: Jaesik surname: Park fullname: Park, Jaesik – sequence: 3 givenname: Vladlen surname: Koltun fullname: Koltun, Vladlen – sequence: 4 givenname: Qian-Yi surname: Zhou fullname: Zhou, Qian-Yi |
BookMark | eNotzM1KxDAUQOEoCo5j1y7c5AXauWmSm2QpHf9gwEFGt0Pa3EhkTKStgm8voqsD3-Kcs5NcMjF2KaARAtyqe9k-NS0I2wAocEescsYKLS2iasEds4UAlDU64c5YNU1vANCilVbpBVvtfH6lPPOu5K9y-JxTyROPZeRryhPx7UghDb_KU-ZyfcFOoz9MVP13yZ5vb3bdfb15vHvorjd1EkbPtRkE9b3pgzYxkFe6JaljHzFSr2CIqLQJZBRFjxEpgGvDgMGS91qhDHLJrv6-iYj2H2N69-P33mpjNRj5A40QRp4 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00409 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 3896 |
ExternalDocumentID | 8578507 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-7c1ebb7bd57fdea452e35fbf6feb40cf6457de74efa6f6ed092dc6d8eaa5463d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-7c1ebb7bd57fdea452e35fbf6feb40cf6457de74efa6f6ed092dc6d8eaa5463d3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8578507 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.5958374 |
Snippet | We present an approach to semantic scene analysis using deep convolutional networks. Our approach is based on tangent convolutions - a new construction for... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3887 |
SubjectTerms | Convolution Geometry Kernel Semantics Shape Three-dimensional displays Two dimensional displays |
Title | Tangent Convolutions for Dense Prediction in 3D |
URI | https://ieeexplore.ieee.org/document/8578507 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJ09TN_GbHDzabW3SJD1vjiFMhmyy28jHGxhCJ9p68Nebt-2miAdvbaAhIQ3v1_M8LyG3PglGwsc6CubbRJxxHhkQEHkTW6e8VsxgvmP2KKZL_rBKVy1yt-fCAEAFPoM-Pla1fLe1JabKBgqVWZA6fhACt5qrtc-nJEIx1VTI8J2FyEZkqlHziYfZYPQ8f0IsF4InOQIQf7RTqazJpENmu3XUIJKXflmYvv38JdH434Uekd43b4_O9xbpmLQgPyGdxtGkzTV-75LBQleUKhq--9j9ezS4r3QcolqcA8s3OEo3OWXjHllO7hejadR0Tog2wR0oImljMEYal0rvQPM0AZZ644UHw4fWC55KB5KD18ILcMMscVY4BVqjPL5jp6Sdb3M4I5SB8tZyLhNvuVWJkdhEIWbaxcy6LDsnXdz_-rUWx1g3W7_4e_iSHOIJ1FirK9Iu3kq4Dla9MDfVcX4BWTaiGA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB0VOMCJrYgdH-CYtrEdxzlwoqBCFyHUIm4ltsdShZQi2oLgW_gV_g07TQtCXJG4JZZiJTNJ3ixvZgCOLXUgYcM0cPCtAs44DxQKDKwKtZE2lUz5eEe7Ixo9fnUX3ZXgfV4Lg4g5-Qwr_jDP5ZuhnvhQWVX6ziy1uKBQNvH1xTloo9PLutPmCaUX592zRlDMEAgGDhjHQaxDVCpWJoqtwZRHFFlklRUWFa9pK3gUG4w52lRYgaaWUKOFkZimvlG8YW7fBVhydkZEp9Vh8wgOFZLJIifnz5nzpUQii_5BYS2pnt1e33j2mKdrck95_DbAJcevi1X4mD35lLbyUJmMVUW__WgK-V9Fswblr8pEcj3H3HUoYbYBq4UpTYof1WgTqt00Lxoj7rrn2ddFnIFO6s5v93v4BJVfJYOMsHoZen9y81uwmA0z3AbCUFqtOY-p1VxLqmI_JiJkqQmZNkmyA5te3v3HafuPfiHq3d-Xj2C50W23-q3LTnMPVrz2p8yyfVgcP03wwNkwY3WYv0oE7v9aQZ_HSAU3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Tangent+Convolutions+for+Dense+Prediction+in+3D&rft.au=Tatarchenko%2C+Maxim&rft.au=Park%2C+Jaesik&rft.au=Koltun%2C+Vladlen&rft.au=Zhou%2C+Qian-Yi&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3887&rft.epage=3896&rft_id=info:doi/10.1109%2FCVPR.2018.00409&rft.externalDocID=8578507 |