Range data registration using photometric features
This paper investigates the use of photometric features for the pair-wise registration of range images. Many artificial and natural objects exhibit abundant surface texture that may not be revealed in range data, and most structured light and laser range sensors are capable of capturing either grays...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 1140 - 1145 vol. 2 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the use of photometric features for the pair-wise registration of range images. Many artificial and natural objects exhibit abundant surface texture that may not be revealed in range data, and most structured light and laser range sensors are capable of capturing either grayscale or color photometric intensity in addition to range data. Nevertheless, the use of photometric features has not been widely investigated for range data registration, despite widespread research into local feature descriptors for object recognition in 2D photometric images. This paper addresses some of the problems that arise in using photometric features for range data registration, and presents a systematic method for their use. Potentially useful photometric features are detected on planar regions in 3D, and then reprojected to 2D to remove the perspective distortion. Then, a well-established 2D rotation- and brightness-invariant image feature descriptor is used for matching. Range data alignment is performed using a RANSAC algorithm, with verification performed in 3D. Experimental results demonstrate the effectiveness of this method. |
---|---|
AbstractList | This paper investigates the use of photometric features for the pair-wise registration of range images. Many artificial and natural objects exhibit abundant surface texture that may not be revealed in range data, and most structured light and laser range sensors are capable of capturing either grayscale or color photometric intensity in addition to range data. Nevertheless, the use of photometric features has not been widely investigated for range data registration, despite widespread research into local feature descriptors for object recognition in 2D photometric images. This paper addresses some of the problems that arise in using photometric features for range data registration, and presents a systematic method for their use. Potentially useful photometric features are detected on planar regions in 3D, and then reprojected to 2D to remove the perspective distortion. Then, a well-established 2D rotation- and brightness-invariant image feature descriptor is used for matching. Range data alignment is performed using a RANSAC algorithm, with verification performed in 3D. Experimental results demonstrate the effectiveness of this method. |
Author | Sang Wook Lee Joon Kyu Seo Sharp, G.C. |
Author_xml | – sequence: 1 surname: Joon Kyu Seo fullname: Joon Kyu Seo organization: Dept. of Media Technol., Sogang Univ., Seoul, South Korea – sequence: 2 givenname: G.C. surname: Sharp fullname: Sharp, G.C. – sequence: 3 surname: Sang Wook Lee fullname: Sang Wook Lee |
BookMark | eNpNjMtKw0AUQAetYFu7dOUmP5A4j8zc3KUEX1CwlOq23CQ3ccQmZWa68O8VdOHZnMWBsxCzcRpZiGslC6Uk3tZvm22hpbSFrvBMzJV0Jneo8FwsJDi02oDWs3_hUqxi_JA_GDRVqedCb2kcOOsoURZ48DEFSn4as1P045Ad36c0HTgF32Y9UzoFjlfioqfPyKs_L8Xrw_2ufsrXL4_P9d069wpsyoG4J0BFrWRw5LipkEvmpoXScIk9VI20ThnWLdoeZaM7p0hXtoOms2iW4ub365l5fwz-QOFrr0oHFpT5BsSlSFg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.289 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 1145 vol. 2 |
ExternalDocumentID | 1467571 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-7aefa791ac0e76a6eb89e4eebc743e49f78b05613e2c95f90b2d61a285d7bd593 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-7aefa791ac0e76a6eb89e4eebc743e49f78b05613e2c95f90b2d61a285d7bd593 |
ParticipantIDs | ieee_primary_1467571 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.6956164 |
Snippet | This paper investigates the use of photometric features for the pair-wise registration of range images. Many artificial and natural objects exhibit abundant... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1140 |
SubjectTerms | Computer vision Data mining Feature extraction Hospitals Iterative closest point algorithm Layout Oncology Photometry Shape Surface texture |
Title | Range data registration using photometric features |
URI | https://ieeexplore.ieee.org/document/1467571 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKJ6YCLeItD4ykD8d24rmiqpCKqoqibpUfN4AQbUXTha_H13kUIQa22Fkcy47vub7nHEJunXFZkpk00k7GEQp2RcoDoUgbzm3stDQC-c6TRzme84eFWDTIXc2FAYBQfAZdfAx3-W5td5gq6-GuFkgYP_DAreBq1fkU5JimJczDduyRjVT1jQJDN5Zw8-mHJNVAFRBeCXzBSiWeqq32Ypy94fN0VqReGFrB_7BgCSfQqEUm1diLwpP37i43Xfv1S9bxvx93RDp7rh-d1qfYMWnA6oS0yuCUllt_67sq_4eqr03YDJkJFItMKRo8VBK8FIvpX-jmdZ2vP9Cxy9IMgoDotkPmo_un4TgqPRiiNx9Y5FGiIdOJGmjbh0RqCSZVwAGM9aEHcJUlqQkgBJhVIlN9w5wcaJYKlxgnVHxKmqv1Cs4ITQwoD89YAqnhhkv_Z1U8jmPhJLd9mZ2TNs7KclPIbCzLCbn4u_uSHAYV1ZANuSLN_HMH1z4-yM1NWBjfrSKyCQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHvSECsZve_DogG1tt56JBBUIIWC4kXV9U2NkRMbFv96-7gNjPHhb3y5d0-599P1-P0JutdJJkKjQibTwHSTscqRJhJxIMRb7OhKKI955NBaDOXtc8EWN3FVYGACwzWfQxkd7l6_TeIulsg6eao6A8T3j97mbo7WqigqiTMMi0cOxb3IbIas7BQ_1WOzdp5mUkK7Mk3jJ8YVXcPGUY7mj4-z0nifTvPjioRj8DxEW64P6DTIqZ5-3nry3t5lqx1-_iB3_-3mHpLVD-9FJ5ceOSA1Wx6RRhKe0OPwbYyoVIEpbk3hTxCZQbDOlKPFQkvBSbKd_oevXNEs_ULMrpglYCtFNi8z797PewClUGJw3E1pkThBBEgXSjeIuBCISoEIJDEDFJvgAJpMgVDYNAS-WPJFd5WnhRl7IdaA0l_4Jqa_SFZwSGiiQJkHzAggVU0yYf6tkvu9zLVjcFckZaeKqLNc50cayWJDzv803ZH8wGw2Xw4fx0wU5sJyqtjZySerZ5xauTLSQqWu7Sb4BMCm1Ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Range+data+registration+using+photometric+features&rft.au=Joon+Kyu+Seo&rft.au=Sharp%2C+G.C.&rft.au=Sang+Wook+Lee&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=1140&rft.epage=1145+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.289&rft.externalDocID=1467571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |