Multi-label annotation study in video semantic content analysis
Annotation is an important step in video content analysis. In this paper, one inter-concepts strong association and dependency multi-label annotation method for video semantic concept is presented. In video content analysis process, concepts are often correlated. One concept in one shot are usually...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 2453 - 2457 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Annotation is an important step in video content analysis. In this paper, one inter-concepts strong association and dependency multi-label annotation method for video semantic concept is presented. In video content analysis process, concepts are often correlated. One concept in one shot are usually dependent on others concepts in the same shot. Co-occurrence of several semantic concepts could imply the presence of other concepts. Unlike previous approaches only to take into count the pair concepts correlations, the proposed methods exploits label correlations between concepts including more than three. For generation the inter-concepts association and dependency rules, join and prune techniques are employed to get potential semantic concept associations in one shot. Compound labels are considered as a single label in annotation step. Experiment results on real-world multi-label media data show that the performance of proposed method is relative satisfied. |
---|---|
AbstractList | Annotation is an important step in video content analysis. In this paper, one inter-concepts strong association and dependency multi-label annotation method for video semantic concept is presented. In video content analysis process, concepts are often correlated. One concept in one shot are usually dependent on others concepts in the same shot. Co-occurrence of several semantic concepts could imply the presence of other concepts. Unlike previous approaches only to take into count the pair concepts correlations, the proposed methods exploits label correlations between concepts including more than three. For generation the inter-concepts association and dependency rules, join and prune techniques are employed to get potential semantic concept associations in one shot. Compound labels are considered as a single label in annotation step. Experiment results on real-world multi-label media data show that the performance of proposed method is relative satisfied. |
Author | Li-Li Li Wei Wei Wen-Qing Liu |
Author_xml | – sequence: 1 surname: Wei Wei fullname: Wei Wei organization: Dept. of Comput. Sci. & Technol., Chengdu Univ. of Inf. Technol., Chengdu, China – sequence: 2 surname: Wen-Qing Liu fullname: Wen-Qing Liu organization: Dept. of Comput. Sci. & Technol., Chengdu Univ. of Inf. Technol., Chengdu, China – sequence: 3 surname: Li-Li Li fullname: Li-Li Li organization: Dept. of Comput. Sci. & Technol., Chengdu Univ. of Inf. Technol., Chengdu, China |
BookMark | eNo1UM1KxDAYjLgLbte-gF7yAl3z5Uva5iRS_Fno4kXB25K2XyHSTWWTFfr2VlznMswwM4dJ2MKPnhi7AbEBEOZuW-3qaiOFMBstQYLRFywBJZXCQqC8ZKkpyn8tccFWEnKRAeLHkiVzrzQwl-QVS0P4FDOUlkWOK3a_Ow3RZYNtaODW-zHa6EbPQzx1E3eef7uORh7oYH10LW9HH8nHOWqHKbhwzZa9HQKlZ16z96fHt-olq1-ft9VDnTkodMwKo6mVTS5BQA6EoulAaK2o760sFWiNrSXoG8LW_Bqqz3tdCqMN5mgA1-z2b9cR0f7r6A72OO3PZ-APUwZPaw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212195 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 2457 |
ExternalDocumentID | 5212195 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-795ec2b6210161e30bd10554effa2841553cae1fbe3c928414f6f580959363913 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:20:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-795ec2b6210161e30bd10554effa2841553cae1fbe3c928414f6f580959363913 |
PageCount | 5 |
ParticipantIDs | ieee_primary_5212195 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.4193368 |
Snippet | Annotation is an important step in video content analysis. In this paper, one inter-concepts strong association and dependency multi-label annotation method... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2453 |
SubjectTerms | Computer science Cybernetics Information analysis Information technology Layout Machine learning Machine learning algorithms Multi-label annotation Semantic concept Semantic scene annotation Testing Video content analysis Video sharing Videoconference |
Title | Multi-label annotation study in video semantic content analysis |
URI | https://ieeexplore.ieee.org/document/5212195 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWDEbRLno54YKqqCKGKgUrcqds9SBSSopAu_nrOdFIEY2GIrkeOLo7uz33sHcJUE2lgddh6nkeaxQsVzYRQXhsJRJVI5ctic2WM6ncf3i2TRgusdFwYRHfgMB_bSneWvSr21W2VDyzMNZdKGNiVunqu120-x0uBZLSXl2hklHq5gXhSmAadUbNHwukRGjqmRe6rboiHUBHJ4N549jL2UZT3ij9IrzvNMujBr3tkDTl4G20oN9OcvOcf_Tmof-t8cP_a0814H0MLiELpNkQdW__M9uHEUXU6LBV9ZXhSlP7tnTpeWrQtmiXwl-8A3-kZrzSz2nQakW73aSR_mk9vn8ZTXVRf4mkKJimcyQR2pNLJ5fYgiUCtbRDNGY3LyZbbOkM4xNAqFlrYjNqlJRk7hmMKdUBxBpygLPAZG0aO2KGd6IIwxzCWSsVVu5ChApNzpBHrWHst3L6yxrE1x-nf3Gez5oxyLlT2HTrXZ4gVFBJW6dEvhC1uNrGQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844ERt0mcj2ZiqKhaaCqGVupWxe5ZqoAEQbrw6zk7SRGIgS22Ejm-OLo7-957ADeBo7ThYed-6CnuS5Q8FVpyoSkclSKM-7Y2J5mGo7n_sAgWDbjdYmEQ0RafYddc2rP8Va42ZqusZ3CmbhzswC75_cAr0VrbHRVDDh5VZFK2HVHqYSXzPDd0OCVjixrZJSJyTTXhU9UWNaTGiXvjQTIZlGSW1Zg_xFes7xm2IKnfuiw5ee5uCtlVn78IHf87rQPofKP82NPWfx1CA7MjaNUyD6z669twZ0G6nJYLvrA0y_Ly9J5ZZlq2zpiB8uXsA1_pK60VM9XvNCDdWvKddGA-vJ8NRrzSXeBrCiYKHsUBKk-GnsnsXRSOXBkZTR-1TsmbGaUhlaKrJQoVmw5fhzroW45jCnhccQzNLM_wBBjFj8rUOdMDro9uGiMZW6Y67juIlD2dQtvYY_lWUmssK1Oc_d19DXujWTJZTsbTx3PYLw92TOXsBTSL9w1eUnxQyCu7LL4AlbWvrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Multi-label+annotation+study+in+video+semantic+content+analysis&rft.au=Wei+Wei&rft.au=Wen-Qing+Liu&rft.au=Li-Li+Li&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=4&rft.spage=2453&rft.epage=2457&rft_id=info:doi/10.1109%2FICMLC.2009.5212195&rft.externalDocID=5212195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |