Multi-label annotation study in video semantic content analysis

Annotation is an important step in video content analysis. In this paper, one inter-concepts strong association and dependency multi-label annotation method for video semantic concept is presented. In video content analysis process, concepts are often correlated. One concept in one shot are usually...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 2453 - 2457
Main Authors Wei Wei, Wen-Qing Liu, Li-Li Li
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Annotation is an important step in video content analysis. In this paper, one inter-concepts strong association and dependency multi-label annotation method for video semantic concept is presented. In video content analysis process, concepts are often correlated. One concept in one shot are usually dependent on others concepts in the same shot. Co-occurrence of several semantic concepts could imply the presence of other concepts. Unlike previous approaches only to take into count the pair concepts correlations, the proposed methods exploits label correlations between concepts including more than three. For generation the inter-concepts association and dependency rules, join and prune techniques are employed to get potential semantic concept associations in one shot. Compound labels are considered as a single label in annotation step. Experiment results on real-world multi-label media data show that the performance of proposed method is relative satisfied.
AbstractList Annotation is an important step in video content analysis. In this paper, one inter-concepts strong association and dependency multi-label annotation method for video semantic concept is presented. In video content analysis process, concepts are often correlated. One concept in one shot are usually dependent on others concepts in the same shot. Co-occurrence of several semantic concepts could imply the presence of other concepts. Unlike previous approaches only to take into count the pair concepts correlations, the proposed methods exploits label correlations between concepts including more than three. For generation the inter-concepts association and dependency rules, join and prune techniques are employed to get potential semantic concept associations in one shot. Compound labels are considered as a single label in annotation step. Experiment results on real-world multi-label media data show that the performance of proposed method is relative satisfied.
Author Li-Li Li
Wei Wei
Wen-Qing Liu
Author_xml – sequence: 1
  surname: Wei Wei
  fullname: Wei Wei
  organization: Dept. of Comput. Sci. & Technol., Chengdu Univ. of Inf. Technol., Chengdu, China
– sequence: 2
  surname: Wen-Qing Liu
  fullname: Wen-Qing Liu
  organization: Dept. of Comput. Sci. & Technol., Chengdu Univ. of Inf. Technol., Chengdu, China
– sequence: 3
  surname: Li-Li Li
  fullname: Li-Li Li
  organization: Dept. of Comput. Sci. & Technol., Chengdu Univ. of Inf. Technol., Chengdu, China
BookMark eNo1UM1KxDAYjLgLbte-gF7yAl3z5Uva5iRS_Fno4kXB25K2XyHSTWWTFfr2VlznMswwM4dJ2MKPnhi7AbEBEOZuW-3qaiOFMBstQYLRFywBJZXCQqC8ZKkpyn8tccFWEnKRAeLHkiVzrzQwl-QVS0P4FDOUlkWOK3a_Ow3RZYNtaODW-zHa6EbPQzx1E3eef7uORh7oYH10LW9HH8nHOWqHKbhwzZa9HQKlZ16z96fHt-olq1-ft9VDnTkodMwKo6mVTS5BQA6EoulAaK2o760sFWiNrSXoG8LW_Bqqz3tdCqMN5mgA1-z2b9cR0f7r6A72OO3PZ-APUwZPaw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212195
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 2457
ExternalDocumentID 5212195
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-795ec2b6210161e30bd10554effa2841553cae1fbe3c928414f6f580959363913
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:20:46 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-795ec2b6210161e30bd10554effa2841553cae1fbe3c928414f6f580959363913
PageCount 5
ParticipantIDs ieee_primary_5212195
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4193368
Snippet Annotation is an important step in video content analysis. In this paper, one inter-concepts strong association and dependency multi-label annotation method...
SourceID ieee
SourceType Publisher
StartPage 2453
SubjectTerms Computer science
Cybernetics
Information analysis
Information technology
Layout
Machine learning
Machine learning algorithms
Multi-label annotation
Semantic concept
Semantic scene annotation
Testing
Video content analysis
Video sharing
Videoconference
Title Multi-label annotation study in video semantic content analysis
URI https://ieeexplore.ieee.org/document/5212195
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWDEbRLno54YKqqCKGKgUrcqds9SBSSopAu_nrOdFIEY2GIrkeOLo7uz33sHcJUE2lgddh6nkeaxQsVzYRQXhsJRJVI5ctic2WM6ncf3i2TRgusdFwYRHfgMB_bSneWvSr21W2VDyzMNZdKGNiVunqu120-x0uBZLSXl2hklHq5gXhSmAadUbNHwukRGjqmRe6rboiHUBHJ4N549jL2UZT3ij9IrzvNMujBr3tkDTl4G20oN9OcvOcf_Tmof-t8cP_a0814H0MLiELpNkQdW__M9uHEUXU6LBV9ZXhSlP7tnTpeWrQtmiXwl-8A3-kZrzSz2nQakW73aSR_mk9vn8ZTXVRf4mkKJimcyQR2pNLJ5fYgiUCtbRDNGY3LyZbbOkM4xNAqFlrYjNqlJRk7hmMKdUBxBpygLPAZG0aO2KGd6IIwxzCWSsVVu5ChApNzpBHrWHst3L6yxrE1x-nf3Gez5oxyLlT2HTrXZ4gVFBJW6dEvhC1uNrGQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsBUoEV844ERt0mcj2ZiqKhaaCqGVupWxe5ZqoAEQbrw6zk7SRGIgS22Ejm-OLo7-957ADeBo7ThYed-6CnuS5Q8FVpyoSkclSKM-7Y2J5mGo7n_sAgWDbjdYmEQ0RafYddc2rP8Va42ZqusZ3CmbhzswC75_cAr0VrbHRVDDh5VZFK2HVHqYSXzPDd0OCVjixrZJSJyTTXhU9UWNaTGiXvjQTIZlGSW1Zg_xFes7xm2IKnfuiw5ee5uCtlVn78IHf87rQPofKP82NPWfx1CA7MjaNUyD6z669twZ0G6nJYLvrA0y_Ly9J5ZZlq2zpiB8uXsA1_pK60VM9XvNCDdWvKddGA-vJ8NRrzSXeBrCiYKHsUBKk-GnsnsXRSOXBkZTR-1TsmbGaUhlaKrJQoVmw5fhzroW45jCnhccQzNLM_wBBjFj8rUOdMDro9uGiMZW6Y67juIlD2dQtvYY_lWUmssK1Oc_d19DXujWTJZTsbTx3PYLw92TOXsBTSL9w1eUnxQyCu7LL4AlbWvrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Multi-label+annotation+study+in+video+semantic+content+analysis&rft.au=Wei+Wei&rft.au=Wen-Qing+Liu&rft.au=Li-Li+Li&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=4&rft.spage=2453&rft.epage=2457&rft_id=info:doi/10.1109%2FICMLC.2009.5212195&rft.externalDocID=5212195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon