Improved Quantum Evolutionary Algorithm for Combinatorial Optimization Problem

The method of calculating rotation angle of quantum rotation gate plays an important role to the performance of quantum evolutionary algorithm (QEA). This paper proposes an improved quantum evolutionary algorithm (IQEA), whose core is that a new approach of adaptive calculating rotation angle of qua...

Full description

Saved in:
Bibliographic Details
Published in2007 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3501 - 3505
Main Authors Rui Zhang, Hui Gao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2007
Subjects
Online AccessGet full text
ISBN1424409721
9781424409723
ISSN2160-133X
DOI10.1109/ICMLC.2007.4370753

Cover

Abstract The method of calculating rotation angle of quantum rotation gate plays an important role to the performance of quantum evolutionary algorithm (QEA). This paper proposes an improved quantum evolutionary algorithm (IQEA), whose core is that a new approach of adaptive calculating rotation angle of quantum rotation gate is designed on the basis of the probability amplitude ratio of the corresponding states. Rapid convergence and good global search capability characterize the performance of IQEA. Based on a typical combinatorial optimization problem - 0/1 knapsack problems, the influence of the relative parameter to the performance of IQEA is demonstrated, and then comparing experiments have been done. The results show that IQEA is superior to the previous quantum evolutionary algorithm.
AbstractList The method of calculating rotation angle of quantum rotation gate plays an important role to the performance of quantum evolutionary algorithm (QEA). This paper proposes an improved quantum evolutionary algorithm (IQEA), whose core is that a new approach of adaptive calculating rotation angle of quantum rotation gate is designed on the basis of the probability amplitude ratio of the corresponding states. Rapid convergence and good global search capability characterize the performance of IQEA. Based on a typical combinatorial optimization problem - 0/1 knapsack problems, the influence of the relative parameter to the performance of IQEA is demonstrated, and then comparing experiments have been done. The results show that IQEA is superior to the previous quantum evolutionary algorithm.
Author Rui Zhang
Hui Gao
Author_xml – sequence: 1
  surname: Rui Zhang
  fullname: Rui Zhang
  organization: Harbin Univ. of Sci. & Technol., Harbin
– sequence: 2
  surname: Hui Gao
  fullname: Hui Gao
BookMark eNo1kNFKw0AURFesYFvzA_qyP5B47-4mN3ksodZAtAoKvpVNu9GVbLakSUG_3oj1aZjDMAwzY5PWt4axa4QIEbLbIn8o80gAUKQkAcXyjAUZpaiEUpCRhHM2-zcCJ2wqMIEQpXy7ZMHh8AkASIkCIafssXD7zh_Njj8Puu0Hx5dH3wy99a3uvviiefed7T8cr33Hc-8q2-p-RLrh631vnf3Wv1n-1PmqMe6KXdS6OZjgpHP2erd8ye_Dcr0q8kUZWqS4DykVCRLFtSapt0CZiCGldIcGDNWIstKoY9oqkaoRZLUWymTbKt2BEVRXcs5u_nqtMWaz76wb125Od8gfyB9UPw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2007.4370753
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424409730
142440973X
EndPage 3505
ExternalDocumentID 4370753
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IK
6IL
6IM
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-78261775fa73ac079250878d1e0e7f113ba1a57c4284e7f9fa24e9cb8d0e27fb3
IEDL.DBID RIE
ISBN 1424409721
9781424409723
ISSN 2160-133X
IngestDate Wed Aug 27 02:10:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-78261775fa73ac079250878d1e0e7f113ba1a57c4284e7f9fa24e9cb8d0e27fb3
PageCount 5
ParticipantIDs ieee_primary_4370753
PublicationCentury 2000
PublicationDate 2007-Aug.
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-Aug.
PublicationDecade 2000
PublicationTitle 2007 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001764023
ssj0000744891
Score 1.4917967
Snippet The method of calculating rotation angle of quantum rotation gate plays an important role to the performance of quantum evolutionary algorithm (QEA). This...
SourceID ieee
SourceType Publisher
StartPage 3501
SubjectTerms Algorithm design and analysis
Automation
Biological cells
Combinatorial optimization
Convergence
Cybernetics
Evolutionary computation
Improved quantum evolutionary algorithm
Knapsack problem
Machine learning
Optimization methods
Probability
Quantum computing
Quantum evolutionary algorithm
Quantum rotation gate
Title Improved Quantum Evolutionary Algorithm for Combinatorial Optimization Problem
URI https://ieeexplore.ieee.org/document/4370753
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEG6AJ59Qwfg7ffDRQreVdXs0BIJGUBNJeCNtd1OigCGbif71XrcOo_HBt63J0q293X131_uOkIvIprZ8qRn4XDABgWZag2JxmMiQQ0-lBZfeeBKOpuJm1pvVyOW2FgYAisNn0LGXRS4_WZvchsq6IpBo4YI6qaOYlbVa23gKmkIROd6XIr4iQ3SNbILZ90LO0BWbVXVdBWNNRffk7oOqoIbH3ev--LZfshu6GX-0Xiksz7BJxtU7lwdOXjp5pjvm8xed438_ape0v2v86P3Weu2RGqz2SbNq8kDdP98ikzLsAAl9yHEX8iUdvDtxVZsPevX6tN4ssuclRfRL8XH0tK0fj2JN71AdLV2dp53Ldq5pk-lw8NgfMdeEgS0QWWQMEQSCHNlLlQyU4TJGzBTJKPGAg0w9L9DKUz1p0I0ROBCnyhcQGx0lHHyZ6uCANFbrFRwSmmofRMyN8EwqtDQasZpVIqhSIl8l5oi07PLM30qejblbmeO_h0_IThlntYfxTkkj2-RwhgAh0-eFZHwBZ9yzlA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHvSECsa3e_DoQh_bbns0BAIKqAkk3MjudqpEAUNaE_31zvaB0Xjw1m7SbLs7nflmZucbQq4Ck9pyhGLgWJxxcBVTCiQL_Uj4Fngyzrj0hiO_N-G3U29aIdebWhgAyA6fQdNcZrn8aKVTEyprcVeghXO3yDbafe7l1VqbiAoaQx4UzC9ZhEX46ByZFLNj-xZDZ2xaVnZlnDUl4VNx75YlNVbY6reHg3bOb1jM-aP5SmZ7ujUyLN86P3Ly0kwT1dSfvwgd__tZe6TxXeVHHzb2a59UYHlAamWbB1r89XUyygMPENHHFPchXdDOeyGwcv1Bb16fVut58rygiH8pPo6-tvHkUbDpPSqkRVHpaeYyvWsaZNLtjNs9VrRhYHPEFglDDIEwR3ixFK7UlggRNQUiiGywQMS27SppS09odGQ4DoSxdDiEWgWRBY6IlXtIqsvVEo4IjZUDPLQ0t3XMldAK0ZpRI6hUAkdG-pjUzfLM3nKmjVmxMid_D1-Snd54OJgN-qO7U7KbR13N0bwzUk3WKZwjXEjURSYlXwTptuE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Improved+Quantum+Evolutionary+Algorithm+for+Combinatorial+Optimization+Problem&rft.au=Rui+Zhang&rft.au=Hui+Gao&rft.date=2007-08-01&rft.pub=IEEE&rft.isbn=9781424409723&rft.issn=2160-133X&rft.volume=6&rft.spage=3501&rft.epage=3505&rft_id=info:doi/10.1109%2FICMLC.2007.4370753&rft.externalDocID=4370753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon