Taxi Dispatch Planning via Demand and Destination Modeling

In this paper, we focus on a taxi dispatch system with the help of auxiliary models that predict future demand and destination. We build two different neural networks for learning taxi demand and destination distribution patterns based on historical data. The trained models can predict taxi demand a...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE 43rd Conference on Local Computer Networks (LCN) pp. 377 - 384
Main Authors Xu, Jun, Rahmatizadeh, Rouhollah, Boloni, Ladislau, Turgut, Damla
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2018
Subjects
Online AccessGet full text
DOI10.1109/LCN.2018.8638038

Cover

Abstract In this paper, we focus on a taxi dispatch system with the help of auxiliary models that predict future demand and destination. We build two different neural networks for learning taxi demand and destination distribution patterns based on historical data. The trained models can predict taxi demand and destination for any area in a city at a future time. Our proposed dispatch system relies on the predictions of the previous models and is designed not only to minimize the waiting time of passengers, but also to assign the taxis to passengers in a way to minimize the idle driving distances of taxis. In order to achieve this, we balance future taxi supply-demand over the city by solving a mixed-integer program (MIP). We validate our dispatch system as well as the prediction models using a dataset of taxi trips in the New York City.
AbstractList In this paper, we focus on a taxi dispatch system with the help of auxiliary models that predict future demand and destination. We build two different neural networks for learning taxi demand and destination distribution patterns based on historical data. The trained models can predict taxi demand and destination for any area in a city at a future time. Our proposed dispatch system relies on the predictions of the previous models and is designed not only to minimize the waiting time of passengers, but also to assign the taxis to passengers in a way to minimize the idle driving distances of taxis. In order to achieve this, we balance future taxi supply-demand over the city by solving a mixed-integer program (MIP). We validate our dispatch system as well as the prediction models using a dataset of taxi trips in the New York City.
Author Boloni, Ladislau
Xu, Jun
Rahmatizadeh, Rouhollah
Turgut, Damla
Author_xml – sequence: 1
  givenname: Jun
  surname: Xu
  fullname: Xu, Jun
  email: junxu@cs.ucf.edu
  organization: Department of Computer Science, University of Central Florida, Orlando, FL
– sequence: 2
  givenname: Rouhollah
  surname: Rahmatizadeh
  fullname: Rahmatizadeh, Rouhollah
  email: rrahmati@cs.ucf.edu
  organization: Department of Computer Science, University of Central Florida, Orlando, FL
– sequence: 3
  givenname: Ladislau
  surname: Boloni
  fullname: Boloni, Ladislau
  email: lboloni@cs.ucf.edu
  organization: Department of Computer Science, University of Central Florida, Orlando, FL
– sequence: 4
  givenname: Damla
  surname: Turgut
  fullname: Turgut, Damla
  email: turgut@cs.ucf.edu
  organization: Department of Computer Science, University of Central Florida, Orlando, FL
BookMark eNotj0tLxDAUhSMo6IyzF9zkD7Tm5qZJ6k5aX1Afi3E93KaJRjrpMC2i_96KsziczeHjOwt2nIbkGbsAkQOI8qqpnnMpwOZWoxVoj9gCCrRaKUB1ylbj-CmEkNqiVnDGrtf0HXkdxx1N7oO_9pRSTO_8KxKv_ZZSx_9S-3GKiaY4JP40dL6fN-fsJFA_-tWhl-zt7nZdPWTNy_1jddNkEUwxZUYrK0xQJZFGLZx2bWc0Ogqh9LqVgZwCQzDrUHABjZPlLFdAiSRV1-KSXf5zo_d-s9vHLe1_Nod7-AsLF0aD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/LCN.2018.8638038
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538644134
9781538644133
EndPage 384
ExternalDocumentID 8638038
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-764807f49aa6360c6cbd763caff9e6b2fac417a1641afcf37c298365193a24db3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-764807f49aa6360c6cbd763caff9e6b2fac417a1641afcf37c298365193a24db3
PageCount 8
ParticipantIDs ieee_primary_8638038
PublicationCentury 2000
PublicationDate 2018-Oct.
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationTitle 2018 IEEE 43rd Conference on Local Computer Networks (LCN)
PublicationTitleAbbrev LCN
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683641
Score 1.7648838
Snippet In this paper, we focus on a taxi dispatch system with the help of auxiliary models that predict future demand and destination. We build two different neural...
SourceID ieee
SourceType Publisher
StartPage 377
SubjectTerms Computational modeling
Data models
demand prediction
destination prediction
Hidden Markov models
optimization
Predictive models
Public transportation
recurrent neural network
Recurrent neural networks
taxi dispatch
Urban areas
Title Taxi Dispatch Planning via Demand and Destination Modeling
URI https://ieeexplore.ieee.org/document/8638038
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEB7UU3vpQ0vf5NBjd91H3E161YqUKj0oeJNJNoGldC2yltJf38yu2gc99BAIgZAwM2QemW8G4IYcHRkY4elIoHNQUHpKGuOhEy-UhL5GCuiPJ8loxh_mvXkDbndYGGNMlXxmfJpWf_nZUq8pVNYVTliCWDSh6cSsxmrt4ilRIuKEh9ufyEB2H_sTSt0S_mbbj_4plfoYHsB4e3CdNfLsr0vl649fNRn_e7ND6HwB9djTTgUdQcMUx7D_rcZgG-6m-J6zQe5eDscgtm1SxN5yZAPzgkXGaJD_mdeRQUb90Qil3oHZ8H7aH3mbhgle7qyA0ksTAohbLhGpDJhOtMrc-6HRWmkSFVnUPEzReUghWm3jVEfSUY2MOIx4puITaBXLwpwCy1SkbBanYagsD2ws0kz3LHfWD9ehMPoM2kSFxWtdE2OxIcD538sXsEecqJPgLqFVrtbmyinzUl1XXPwEbjCesQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPagXH634NgeP7nYf6W7itbVUbYuHFnorecIibkW2Iv56M7ttfeDBQyAEQsLMkHlkvhmAK3R0eGCYpyImnIMiuCe5MZ5w4iU4oq8FBvSHo6Q_offT9rQG12ssjDGmTD4zPk7Lv3w9VwsMlbWYE5YgZhuw6fQ-bVdorXVEJUpYnNBw9RcZ8NagM8LkLeYvN_7ooFIqkN4uDFdHV3kjT_6ikL76-FWV8b9324PmF1SPPK6V0D7UTH4AO9-qDDbgZizeM9LN3NvhWERWbYrIWyZI1zyLXBMc6IFmVWyQYIc0xKk3YdK7HXf63rJlgpc5O6Dw0gQh4pZyIbAQmEqU1O4FUcJabhIZWaFomArnI4XCKhunKuKOamjGiYhqGR9CPZ_n5giIlpG0Ok7DUFoa2JilWrUtdfYPVSEz6hgaSIXZS1UVY7YkwMnfy5ew1R8PB7PB3ejhFLaRK1VK3BnUi9eFOXeqvZAXJUc_Ae95of4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+43rd+Conference+on+Local+Computer+Networks+%28LCN%29&rft.atitle=Taxi+Dispatch+Planning+via+Demand+and+Destination+Modeling&rft.au=Xu%2C+Jun&rft.au=Rahmatizadeh%2C+Rouhollah&rft.au=Boloni%2C+Ladislau&rft.au=Turgut%2C+Damla&rft.date=2018-10-01&rft.pub=IEEE&rft.spage=377&rft.epage=384&rft_id=info:doi/10.1109%2FLCN.2018.8638038&rft.externalDocID=8638038